ELSEVIER

Contents lists available at ScienceDirect

Planetary and Space Science

journal homepage: www.elsevier.com/locate/pss

Galileo dust data from the jovian system: 2000 to 2003

H. Krüger ^{a,b,*}, D. Bindschadler ^c, S.F. Dermott ^d, A.L. Graps ^e, E. Grün ^{b,f}, B.A. Gustafson ^d, D.P. Hamilton ^g, M.S. Hanner ^h, M. Horányi ^f, J. Kissel ^a, D. Linkert ^b, G. Linkert ^b, I. Mann ⁱ, J.A.M. McDonnell ^j, R. Moissl ^a, G.E. Morfill ^k, C. Polanskey ^c, M. Roy ^c, G. Schwehm ^l, R. Srama ^{b,m}

- ^a Max-Planck-Institut für Sonnensystemforschung, 37191 Katlenburg-Lindau, Germany
- ^b Max-Planck-Institut für Kernphysik, 69029 Heidelberg, Germany
- ^c Jet Propulsion Laboratory, Pasadena, CA 91109, USA
- ^d University of Florida, 211 SSRB, Campus, Gainesville, FL 32609, USA
- e Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302, USA
- ^f Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309, USA
- ^g University of Maryland, College Park, MD 20742-2421, USA
- ^h Astronomy Department 619 LGRT, University of Massachusetts, Amherst, MA 01003, USA
- ¹ School of Science and Engineering, Kindai University, Kowakae 3-4-1, Higashi-Osaka, Osaka 577-8502, Japan
- ^j Planetary and Space Science Research Institute, The Open University, Milton Keynes, MK7 6AA, UK
- ^k Max-Planck-Institut für Extraterrestrische Physik, 85748 Garching, Germany
- ¹ ESAC, PO Box 78, 28691 Villanueva de la Cañada, Spain
- ^m Universität Stuttgart, Institut für Raumfahrtsysteme, Pfaffenwaldring 31, 70569 Stuttgart, Germany

ARTICLE INFO

Article history: Received 6 August 2009 Received in revised form 3 February 2010 Accepted 4 March 2010 Available online 10 March 2010

Keywords:
Circumplanetary dust
Planetary rings
Dust/magnetosphere interaction
Interplanetary dust
Dusty plasmas

ABSTRACT

The Galileo spacecraft was the first man-made satellite of Jupiter, orbiting the planet between December 1995 and September 2003. The spacecraft was equipped with a highly sensitive dust detector that monitored the jovian dust environment between approximately 2 and 370 $R_{\rm I}$ (jovian radius $R_{\rm l}$ = 71 492 km). The Galileo dust detector was a twin of the one flying on board the Ulysses spacecraft. This is the tenth in a series of papers dedicated to presenting Galileo and Ulysses dust data. Here we present data from the Galileo dust instrument for the period January 2000 to September 2003 until Galileo was destroyed in a planned impact with Jupiter. The previous Galileo dust data set contains data of 2883 particles detected during Galileo's interplanetary cruise and 12978 particles detected in the jovian system between 1996 and 1999. In this paper we report on the data of additional 5389 particles measured between 2000 and the end of the mission in 2003. The majority of the 21 250 particles for which the full set of measured impact parameters (impact time, impact direction, charge rise times, charge amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in radius), most of them originating from Jupiter's innermost Galilean moon Io. They were detected throughout the jovian system and the impact rates frequently exceeded $10 \, \mathrm{min}^{-1}$. Surprisingly large impact rates up to $100 \, \mathrm{min}^{-1}$ occurred in August/September 2000 when Galileo was far away ($\approx 280 \, R_{\mathrm{I}}$) from Jupiter, implying dust ejection rates in excess of 100 kg s⁻¹. This peak in dust emission appears to coincide with strong changes in the release of neutral gas from the Io torus. Strong variability in the Io dust flux was measured on timescales of days to weeks, indicating large variations in the dust release from Io or the Io torus or both on such short timescales. Galileo has detected a large number of bigger micron-sized particles mostly in the region between the Galilean moons. A surprisingly large number of such bigger grains was measured in March 2003 within a four-day interval when Galileo was outside Jupiter's magnetosphere at approximately 350 R_1 jovicentric distance. Two passages of Jupiter's gossamer rings in 2002 and 2003 provided the first actual comparison of in-situ dust data from a planetary ring with the results inferred from inverting optical images. Strong electronics degradation of the dust instrument due to the harsh radiation environment of Jupiter led to increased calibration uncertainties of the dust data.

 $\ensuremath{\text{@}}$ 2010 Elsevier Ltd. All rights reserved.

E-mail address: krueger@mps.mpg.de (H. Krüger).

1. Introduction

The Galileo spacecraft was the first artifical satellite orbiting Jupiter. Galileo had a highly sensitive impact ionization dust

^{*} Corresponding author at: Max-Planck-Institut für Sonnensystemforschung, 37191 Katlenburg-Lindau, Germany.

detector on board which was identical with the dust detector of the Ulysses spacecraft (Grün et al., 1992a, 1992b, 1995c). Dust data from both spacecraft were used for the analysis of e.g. the interplanetary dust complex, dust related to asteroids and comets, interstellar dust grains sweeping through the solar system, and various dust phenomena in the environment of Jupiter. References can be found in Krüger et al. (1999a, 2010).

In Section 1.1 we summarise results that are related to dust in the Jupiter system. A more comprehensive overview of the investigation of dust in the jovian system was given by Krüger (2003) and Krüger et al. (2004).

1.1. Summary of results from the Galileo dust investigations at lupiter

The Jupiter system was found to be a strong source of dust when in 1992 Ulysses flew by the planet and discovered streams of dust particles emanating from the giant planet's magnetosphere (Grün et al., 1993). These were later confirmed by Galileo (Grün et al., 1996a, 1996b) and measured again by Ulysses in 2003–2005 during its second flyby at the planet (Krüger et al., 2006c; Flandes and Krüger, 2007). During its two Jupiter flybys, within a distance of 3 AU from the planet, Ulysses measured 11 and 28 dust streams, respectively.

At least four dust populations were identified in the Jupiter system with Galileo (Grün et al., 1997a, 1998):

- (i) Streams of dust particles with high and variable impact rates throughout Jupiter's magnetosphere. They are the extension of the streams discovered with Ulysses outside Jupiter's magnetosphere. The particles are about 10 nm in radius (Zook et al., 1996) and they mostly originate from the innermost Galilean moon Io (Graps et al., 2000). Because of their small sizes the charged grains strongly interact with Jupiter's magnetosphere (Horányi et al., 1997; Grün et al., 1997a, 1998; Heck, 1998), and they are a natural laboratory to study dust-plasma interactions. The dust streams mostly show a dust-in-plasma behaviour, i.e. the particle motion can be described by single particle dynamics, while only some portions of those Galileo orbits displaying the highest dust stream fluxes (Galileo orbits E4, G7, G8, C21) satisfy the minimum requirements for a dusty plasma where collective effects dominate particle motion (Graps, 2006). The dust streams served as a monitor of Io's volcanic plume activity, showing that periods with high measured dust fluxes are most likely connected with heavy volcanic eruptions on Io (Krüger et al., 2003a). The dust streams measurements revealed significant dust flux variations with jovian local time (Krüger et al., 2003b) consistent with theoretical expectations (Horányi et al., 1997), demonstrating that the dust measurements probe the plasma conditions in the Io torus. Graps (2001) and Flandes (2005) investigated dust charging mechanisms in the jovian magnetosphere and in Io's plumes. The particles reach an equilibrium potential of approximately +5 V and they collect most of their charge within about 20 $R_{\rm I}$ from Jupiter. Dust measurements of the Cassini spacecraft at its Jupiter flyby in 2000 showed that the grains are mostly composed of sodium chloride (NaCl) formed by condensation in Io's volcanic plumes (Postberg
- (ii) Dust clouds surrounding the Galilean moons which consist of mostly sub-micron grains (Krüger et al., 1999d, 2000, 2003c). These clouds were detected within the Hill spheres of the moons and the grains were secondary ejecta particles kicked up from the moons' surfaces by hypervelocity impacts

- of interplanetary micrometeoroids (Krivov et al., 2003; Sremčević et al., 2003, 2005). The majority of the ejecta grains follows ballistic trajectories and falls back to the moons' surfaces while a small fraction can even leave the gravity field of the moons and go into orbit about Jupiter.
- (iii) Bigger micron-sized grains forming a tenuous dust ring between the Galilean moons and further beyond. The measured dust mass distribution peaks at about 2 μm (assuming spherical grains with density 1 g cm⁻³ Krüger et al., 2006b). This group is composed of two sub-populations, one orbiting Jupiter on prograde orbits and a second one on retrograde orbits (Colwell et al., 1998; Thiessenhusen et al., 2000). Most of the prograde population is maintained by grains escaping from the clouds that surround the Galilean moons (Krivov et al., 2002a). Dusty motes most likely released from the surfaces of the irregular outer satellites of Jupiter were also found to about 300 R_J from Jupiter, showing both prograde and retrograde orbits (Krivov et al., 2002b).
- (iv) On 5 November 2002 and 21 September 2003—before Galileo was destroyed in a planned impact with Jupiter—the space-craft traversed Jupiter's gossamer ring twice and provided the first in-situ measurements of a dusty planetary ring (Krüger, 2003; Moissl, 2005; Krüger et al., 2009) which is also accessible with astronomical imaging techniques. These fly-throughs revealed previously unknown structures in the gossamer rings: a drop in the dust density between the moons Amalthea and Thebe, grains orbiting Jupiter on highly inclined orbits and an increase in the number of small grains in the inner regions of the rings as compared to the regions further away from the planet. All these features can nicely be explained by electromagnetic forces on the grains that shape the gossamer rings (Hamilton and Krüger, 2008).

1.2. The Galileo and Ulysses dust data papers

This is the tenth paper in a series dedicated to presenting both raw and reduced data from the Galileo and Ulysses dust instruments. Grün et al. (1995c, hereafter Paper I) described the reduction process of Galileo and Ulysses dust data. In the evennumbered Papers II, IV, VI and VIII (Grün et al., 1995a; Krüger et al., 1999a, 2001a, 2006b) we presented the Galileo data set spanning the ten year time period from October 1989 to December 1999. The present paper extends the Galileo data set from January 2000 to September 2003, which covers the Galileo Millenium mission and two traverses of Jupiter's gossamer ring until the spacecraft impacted Jupiter on 21 September 2003. Companion odd-numbered Papers III, V, VII, IX and XI (Grün et al., 1995b; Krüger et al., 1999c, 2001b, 2006a, 2010) provide the entire dust data set measured with Ulysses between 1990 and 2007. An overview of our Galileo dust data papers and mission highlights is given in Table 1.

The main data products are a table of the number of all impacts determined from the particle accumulators and a table of both raw and reduced data of all "big" impacts received on the ground. The information presented in these papers is similar to data which we are submitting to the various data archiving centres (planetary data system, NSSDC, etc.). The only difference is that the paper version does not contain the full data set of the large number of "small" particles, and the numbers of impacts deduced from the accumulators are typically averaged over several days. Electronic access to the complete data set including the numbers of impacts deduced from the accumulators in full time resolution is also possible via the world wide web: http://www.mpi-hd.mpg.de/dustgroup/.

 Table 1

 Summary of Galileo dust data papers and significant mission events.

Time interval	Significant mission events	Paper number
1989–1992 1993–1995	Galileo launch (18 October 1989) Jupiter orbit insertion (7 December 1995)	II Grün et al. (1995c) IV Krüger et al. (1999a)
1996 1997–1999	Galileo orbits G1-E4 Galileo orbits J5-I25	VI Krüger et al. (2001a) VIII Krüger et al. (2006b)
2000-2003	Galileo orbits E26-J35, First gossamer ring passage (5 November 2002), second gossamer ring passage and Galileo Jupiter impact (21 September 2003)	X (this paper)

This paper is organised similarly to our previous papers. Section 2 gives a brief overview of the Galileo mission with particular emphasis on the time period 2000–2003, the dust instrument operation and lists important mission events in the time interval 2000–2003 considered in this paper. A description of the new Galileo dust data set for 2000–2003 together with a discussion of the detected noise and dust impact rates is given in Section 3. Section 4 analyses and discusses various characteristics of the new data set. Finally, in Section 5 we discuss results on jovian dust achieved with this new data set, and in Section 6 we summarise our results.

2. Mission and instrument operations

2.1. Galileo mission

Galileo was launched on 18 October 1989. On 7 December 1995 the spacecraft arrived at Jupiter and was injected into a highly elliptical orbit about the planet, becoming the first spacecraft orbiting a planet of the outer solar system. Galileo performed 34 revolutions about Jupiter until 21 September 2003 when the spacecraft was destroyed in a planned impact with Jupiter.

Galileo's trajectory during its orbital tour about Jupiter from January 2000 to September 2003 is shown in Fig. 1. Galileo had regular close flybys at Jupiter's Galilean moons. Eight such encounters occurred in the 2000–2003 interval (1 at Europa, 4 at Io, 2 at Ganymede, 1 at Callisto) plus one at Amalthea (Table 2). Galileo orbits are labelled with the first letter of the Galilean moon which was the encounter target during that orbit, followed by the orbit number. For example, "G29" refers to a Ganymede flyby in orbit 29. Satellite flybys always occurred within two days of Jupiter closest approach (pericentre passage). Detailed descriptions of the Galileo mission and the spacecraft were given by Johnson et al. (1992) and D'Amario et al. (1992).

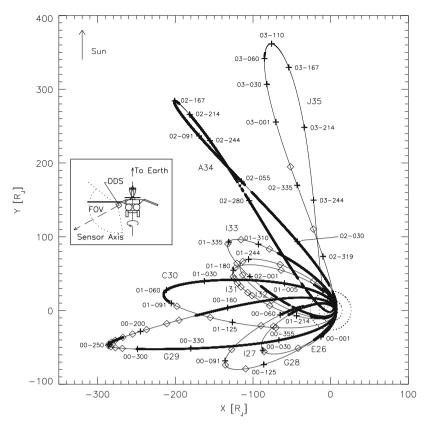
Galileo was a dual spinning spacecraft with an antenna that pointed antiparallel to the positive spin axis. During most of the initial 3 years of the mission the antenna pointed towards the Sun for thermal protection of the spacecraft (Paper II). Since 1993 the antenna was usually pointed towards Earth for data transmission. Deviations from the Earth pointing direction in 2000–2003, the time period considered in this paper, are shown in Fig. 2. Sharp spikes in the pointing deviation occurred when the spacecraft was turned away from the nominal Earth direction for dedicated imaging observations with Galileo's cameras or for orbit trim maneuvers with the spacecraft thrusters. These spikes lasted typically several hours. From January to September 2003 (Fig. 2d), the Galileo pointing deviated significantly from the Earth pointing

direction for a long time interval. Table 2 lists significant mission and dust instrument events for 2000–2003. Comprehensive lists of earlier events can be found in Papers II, IV, VI and VIII.

2.2. Dust detection geometry

The dust detector system (DDS) was mounted on the spinning section of Galileo and the sensor axis was offset by 60° from the positive spin axis (an angle of 55° was erroneously stated in publications before). A schematic view of the Galileo spacecraft and the geometry of dust detection is shown in the inset in Fig. 1.

The rotation angle measured the viewing direction of the dust sensor at the time of a dust impact. During one spin revolution of the spacecraft the rotation angle scanned through a complete circle of 360°. At rotation angles of 90° and 270° the sensor axis lay nearly in the ecliptic plane, and at 0° it was close to the ecliptic north direction. DDS rotation angles are taken positive around the negative spin axis of the spacecraft which pointed towards Earth. This is done to facilitate comparison of the Galileo spin angle data with those taken by Ulysses, which, unlike Galileo, had its positive spin axis pointed towards Earth (Grün et al., 1995c).


The nominal field-of-view (FOV) of the DDS sensor target was 140°. A smaller FOV applies to a subset of jovian dust stream particle impacts—the so-called class 3 impacts in amplitude range AR1 (Krüger et al., 1999b, cf. Papers I and IV and Section 3.1 for a definition of these parameters) while the nominal target size should be applied to class 2 jovian dust stream impacts. For all impacts which are not due to jovian dust stream particles a larger FOV of 180° should be applied because the inner sensor side wall turned out to be almost as sensitive to larger dust impacts as the target itself (Altobelli et al., 2004; Willis et al., 2004, 2005). These different sensor fields-of-view and the corresponding target sizes are summarised in Table 3.

During one spin revolution of the spacecraft the sensor axis scanned a cone with 120° opening angle towards the anti-earth direction. Dust particles that arrived from within 10° of the positive spin axis (anti-earth direction) could be detected at all rotation angles, whereas those that arrived at angles from 10° to 130° from the positive spin axis could be detected over only a limited range of rotation angles. Note that these angles refer to the nominal sensor field-of-view of 140°.

2.3. Data transmission

The Galileo dust instrument memory could store 46 instrument data frames, with each frame comprising the complete data set of an impact or noise event, consisting of 128 bits, plus ancillary and engineering data (cf. Papers I and II). Each impact event was time-tagged with an 8 bit word allowing for the identification of 256 unique steps, with a step size of 4.3 h. Hence, the total accumulation time after which the time word was reset and the time labels of older impact events became ambiguous was $256 \times 4.3 \, h \simeq 46 \, days$.

Galileo had various data transmission modes. During a large fraction of Galileo's orbital mission about Jupiter dust detector data were transmitted to Earth in the so-called realtime science mode (RTS). In RTS mode, dust data were read out either every 7.1 or every 21.2 min—depending on the spacecraft data transmission rate—and directly transmitted to Earth. Additionally, Galileo had the so-called record mode. In this mode data read out from the dust instrument memory were recorded on Galileo's tape recorder and transmitted to Earth up to several weeks later. Recorded data were received during three satellite flybys in 2000 during short periods of $\sim \pm 1/2\,\mathrm{h}$ around closest approach to the satellite, and for $\sim 3.8\,\mathrm{h}$ during Galileo's gossamer ring passage on 5 November

Fig. 1. Galileo's trajectory in the jovian system from 2000 to 2003 in a Jupiter-centric coordinate system (thin solid line). Crosses mark the spacecraft position at approximately 30 day intervals (days of year are indicated). Periods when RTS data were obtained are shown as thick solid lines, MROs are marked by diamonds. Galileo's orbits are labelled 'E26', '127', 'G28', 'G29', 'C30', '131', '132', '133', 'A34' and 'J35'. Sun direction is to the top and the Sun and Earth directions coincide to within 10°. The orbits of the Galilean moons are indicated (dotted lines). The sketch of the Galileo spacecraft shows the dust detector (DDS), its geometry of dust detection and its field-of-view (FOV). The spacecraft antenna usually pointed towards Earth and the spacecraft made about 3 revolutions per minute.

 Table 2

 Galileo mission and dust detector (DDS) configuration, tests and other events (2000–2003).

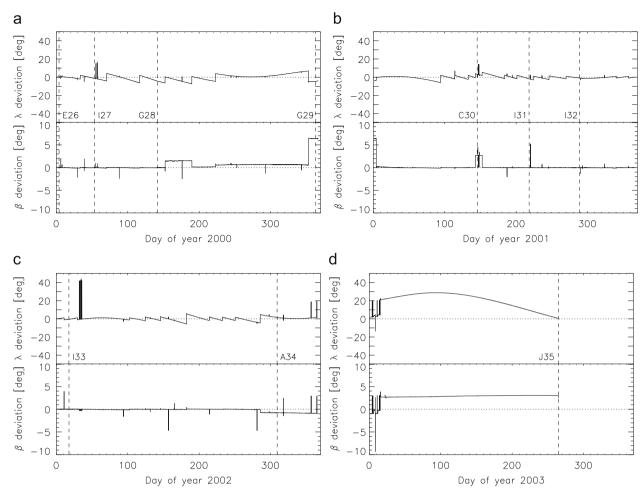
Yr-day	Date	Time	Event
89-291	18 October 1989	16:52	Galileo launch
95-341	07 December 1995	21:54	Galileo Jupiter closest approach, distance: 4.0 R _I
99-345	11 December 1999	02:07	DDS configuration: HV=4, EVD=I, SSEN=0,1,1,1
00-001	01 January 2000	00:00	DDS begin RTS data
00-003	03 January 2000	17:28	DDS end RTS data, begin record data
00-003	03 January 2000	18:00	Galileo Europa 26 (E26) closest approach, altitude 351 km
00-003	03 January 2000	18:30	DDS end record data, begin RTS data
00-004	04 January 2000	03:33	Galileo Jupiter closest approach, distance 5.8 $R_{\rm J}$
00-006	06 January 2000	02:00	Galileo turn 5°, duration 3 h, return to nominal attitude
00-007	07 January 2000	19:00	Galileo OTM-82, size of turn 3°, duration 5 h, return to nominal attitude
00-009	09 January 2000	11:49	DDS end RTS data
00-029	29 January 2000	04:00	Galileo OTM-83, size of turn 3°, duration 3 h, return to nominal attitude
00-033	02 February 2000	18:00	Galileo turn 4° , new nominal attitude
00-038	07 February 2000	23:00	Galileo turn 7°, duration 3 h, return to nominal attitude
00-049	18 February 2000	16:36	Galileo OTM-84, no attitude change
00-050	19 February 2000	12:00	DDS begin RTS data
00-053	22 February 2000	12:30	Galileo Jupiter closest approach, distance 5.9 $R_{\rm J}$
00-053	22 February 2000	13:02	DDS end RTS data, begin record data
00-053	22 February 2000	13:47	Galileo Io 27 (I27) closest approach, altitude 198 km
00-053	22 February 2000	14:25	DDS end record data, begin RTS data
00-054	23 February 2000	19:20	DDS last RTS data before spacecraft anomaly
00-055	24 February 2000	04:00	Galileo turn 15°, duration 30 h, return to nominal attitude
00-055	24 February 2000	21:00	Galileo spacecraft anomaly
00-056	25 February 2000	04:16	DDS begin RTS data after spacecraft anomaly
00-057	25 February 2000	14:00	Galileo OTM-85, size of turn 19°, duration 11 h, return to nominal attitude
00-059	28 February 2000	23:56	DDS end RTS data
00-070	10 March 2000	10:00	Galileo turn 8°, new nominal attitude
00-088	28 March 2000	00:00	Galileo turn 3°, duration 3 h, return to nominal attitude
00-098	07 April 2000	12:00	Galileo OTM-86, no attitude change
00-116	25 April 2000	20:00	Galileo turn 8°, new nominal attitude
00-117	26 April 2000	01:11	DDS last MRO before solar conjunction
00-118	27 April 2000		Start solar conjunction period

Table 2 (continued)

Yr-day	Date	Time	Event
00-138	17 May 2000		End solar conjunction period
00-138	17 May 2000	09:30	DDS begin RTS data
00-139	18 May 2000	10:00	Galileo OTM-87, no attitude change
00-141	20 May 2000	09:39	DDS end RTS data, begin record data
00-141	20 May 2000	10:10	Galileo Ganymede 28 (G28) closest approach, altitude 808 km
00-141	20 May 2000	10:40	DDS end record data, begin RTS data
00-142	21 May 2000	04:52	Galileo Jupiter closest approach, distance 6.7 R _J
00-143	22 May 2000	08:00	Galileo turn 2°, duration 1 h, return to nominal attitude
00-146	25 May 2000	08:00	Galileo OTM-88, no attitude change
00-152	31 May 2000	07:00	Galileo turn 8°, new nominal attitude
00-170	18 June 2000	23:57	DDS end RTS data
00-176	23 June 2000	03:00	Galileo turn 7°, duration 2 h, return to nominal attitude
00-189	07 July 2000	19:00	Galileo turn 9°, new nominal attitude
00-209	27 July 2000	11:11	DDS configuration: HV=5
00-216 00-223	03 August 2000 10 August 2000	18:31 02:00	DDS begin RTS data Galileo turn 9°, new nominal attitude
00-223	31 August 2000	16:00	Galileo turn 2°, duration 2 h, return to nominal attitude
00-244	08 September 2000	18:00	Galileo OTM-89, size of turn 2°, duration 3 h, return to nominal attitude
00-252	09 September 2000	08:11	DDS end RTS data
00-300	26 October 2000	10:01	DDS begin RTS data
00-302	28 October 2000	01:00	Galileo OTM-90, no attitude change
00-342	07 December 2000	23:00	Galileo turn 2°, duration 1 h, return to nominal attitude
00-353	18 December 2000	05:00	Galileo turn 20°, new nominal attitude
00-356	21 December 2000	20:15	Galileo OTM-91, no attitude change
00-363	28 December 2000	08:25	Galileo Ganymede 29 (G29) closest approach, altitude 2,337 km
00-364	29 December 2000	03:27	Galileo Jupiter closest approach, distance 7.5 R_1
01-002	02 January 2001	20:00	Galileo OTM-92, no attitude change
01-004	04 January 2001	03:30	Galileo turn 10°, return to nominal attitude
01-086	27 March 2001	23:00	DDS end RTS data
01-094	04 April 2001	04:00	Galileo turn 8°, new nominal attitude
01-114	24 April 2001	03:00	Galileo turn 8°, duration 9 h, return to nominal attitude
01-130	10 May 2001	16:00	Galileo OTM-94, no attitude change
01-133	13 May 2001	01:00	Galileo turn 4°, new nominal attitude
01-142	22 May 2001	23:00	Galileo turn 6°, return to nominal attitude
01-143	23 May 2001	12:01	DDS begin RTS data
01-143	23 May 2001	17:33	Galileo Jupiter closest approach, distance 7.3 $R_{\rm J}$
01-144	24 May 2001	06:00	DDS end RTS data
01-145	25 May 2001	04:00	DDS begin RTS data
01-145	25 May 2001	11:24	Galileo Callisto 30(C30) closest approach, altitude 138 km
01-146	26 May 2001	07:15	DDS end RTS data
01-146	26 May 2001	09:00	Galileo turn 5°, duration 2 h, return to nominal attitude
01-146	26 May 2001	22:00	Galileo turn 12°, duration 13 h, return to nominal attitude
01-148	28 May 2001	19:00	Galileo OTM-95, size of turn 1°
01-152	01 June 2001	11:00	Galileo turn 5°, new nominal attitude
01-154	03 June 2001	16:58	DDS last MRO before solar conjunction
01-155	04 June 2001		Start solar conjunction period
01-174	23 June 2001	22.50	End solar conjunction period
01-177	26 June 2001	22:58	DDS fist MRO after solar conjunction
01-183	02 July 2001	21:00	Galileo turn 4°, new nominal attitude
01-186	05 July 2001	05:00	Galileo turn 5°, duration 5 h, return to nominal attitude
01-194	13 July 2001	06:00	Galileo OTM-97, size of turn 3°, duration 4h, return to nominal attitude
01-201 01-215	20 July 2001	07:00 23:00	Galileo turn 4°, new nominal attitude
01-215 01-217	03 August 2001	23:00	Galileo OTM-98, no attitude change
	05 August 2001 06 August 2001	05:12 04:52	DDS begin RTS data Galileo Jupiter closest approach, distance 5.9 R_1
)1-218)1-218	06 August 2001 06 August 2001	04:52	Galileo Io 31 (I31) closest approach, altitude 193 km
)1-218)1-219	07 August 2001	16:08	DDS end RTS data
)1-219)1-220	07 August 2001 08 August 2001	03:00	Galileo turn 7°, duration 2 h, return to nominal attitude
)1-220)1-222	10 August 2001	19:30	Galileo OTM-99, no attitude change
01-222	12 August 2001	08:00	Galileo turn 3°, new nominal attitude
01-224	24 August 2001	07:00	Galileo turn 3°, duration 2 h, return to nominal attitude
01-230	02 September 2001	03:00	Galileo OTM-100, no attitude change
01-246	03 September 2001	05:00	Galileo turn 4°, new nominal attitude
01-240	18 September 2001	12:00	Galileo OTM-101, no attitude change
01-270	27 September 2001	04:00	Galileo turn 3°, new nominal attitude
01-286	13 October 2001	18:00	Galileo OTM-102, no attitude change
01-287	14 October 2001	02:04	DDS begin RTS data
01-288	15 October 2001	23:56	Galileo Jupiter closest approach, distance 5.8 R ₁
01-289	16 October 2001	01:23	Galileo Io 32 (132) closest approach, altitude 184 km
01-290	17 October 2001	12:00	Galileo turn 3°, duration 2 h, return to nominal attitude
01-293	20 October 2001	04:00	Galileo OTM-103, size of turn 1°, duration 2 h, return to nominal attitude
01-301	28 October 2001	23:30	DDS end RTS data
01-324	20 November 2001	00:00	Galileo turn 4°, duration 2 h, return to nominal attitude
01-335	01 December 2001	00:00	Galileo OTM-104, no attitude change
01-340	06 December 2001	15:00	Galileo turn 2°, new nominal attitude

Table 2 (continued)

Yr-day	Date	Time	Event
01-357	23 December 2001	16:00	Galileo turn 2°, new nominal attitude
02-004	04 January 2002	12:25	DDS begin RTS data
02-010	10 January 2002	00:00	Galileo turn 5°, duration 2 h, new nominal attitude
02-017	17 January 2002	09:15	DDS end RTS data
02-017	17 January 2002	13:40	Galileo spacecraft anomaly
02-017	17 January 2002	14:08	Galileo Io 33 (133) closest approach, altitude 102 km
02-017	17 January 2002	16:23	Galileo Jupiter closest approach, distance $5.5 R_1$
02-017	17 January 2002	23:50	DDS begin RTS data after spacecraft anomaly
02-021	21 January 2002	12:00	Galileo OTM-106, no attitude change
02-029	29 January 2002	23:00	Galileo turn 2°, new nominal attitude
02-032	01 February 2002	01:00	Galileo turn 44°, duration 90 h, return to nominal attitude
02-047	16 February 2002	19:09	Galileo spacecraft anomaly
02-051	20 February 2002	17:54	DDS begin RTS data after spacecraft anomaly
02-094	04 April 2002	00:00	Galileo turn 3°, duration 3 h, return to nominal attitude
02-102	12 April 2002	05:00	Galileo turn 3°, new nominal attitude
	•		·
02-124	04 May 2002	23:00	Galileo turn 4°, new nominal attitude
02-131	11 May 2002	12:00	Galileo turn 1°, duration 2 h, return to nominal attitude
02-146	26 May 2002	02:00	Galileo turn 4°, new nominal attitude
02-157	06 June 2002	02:00	Galileo turn 6°, duration 3 h, return to nominal attitude
02-165	14 June 2002	16:00	Galileo OTM-107, size of turn 3°, duration 3 h, return to nominal attitude
02-182	01 July 2002	11:00	Galileo turn 12°, new nominal attitude
02-190	09 July 2002		Begin solar conjunction
02-209	28 July 2002		End solar conjunction
02-214	02 August 2002	08:00	Galileo turn 5°, new nominal attitude
02-232	20 August 2002	15:00	Galileo turn 4°, new nominal attitude
02-250	07 September 2002	12:00	Galileo turn 4°, new nominal attitude
02-274	01 October 2002	19:30	Galileo spacecraft anomaly
02-275	02 October 2002	23:54	DDS begin RTS after spacecraft anomaly
02-281	08 October 2002	02:00	Galileo turn 6°, duration 3 h, return to nominal attitude
02-285	12 October 2002	15:00	Galileo turn 9°, new nominal attitude
02-298	25 October 2002	03:00	Galileo turn 2°, duration 2 h, return to nominal attitude
02-309	05 November 2002	02:44	DDS end RTS data
02-309	05 November 2002	02:44	DDS begin record data
02-309	05 November 2002	06:19	Galileo Amalthea 34 (A34) closest approach, 244 km distance
			from moon's centre
02-309	05 November 2002	06:35	Galileo spacecraft anomaly, end record data
02-309	05 November 2002	07:25	Galileo Jupiter closest approach, distance 2.0 R_1
02-303	14 November 2002	08:00	Galileo turn 9°, duration 3 h, return to nominal attitude
02-318	18 November 2002	14:29	DDS first MRO after spacecraft anomaly
02-363	29 December 2002	07:53	DDS final MRO
03-003			
	03 January 2003	22:00	Galileo turn 20°, duration 6 h, return to nominal attitude
03-004	04 January 2003	21:00	Galileo turn 20°, duration 5 h, return to nominal attitude
03-008	08 January 2003	08:00	Galileo turn 17°, duration 2 h, return to nominal attitude
03-010	10 January 2003	22:00	Galileo turn 22°, duration 82 h, return to nominal attitude
03-015	15 January 2003	10:00	Galileo turn 22°, new nominal attitude
03-063	04 March 2003	15:00	DDS begin RTS data
03-070	11 March 2003	21:50	DDS end RTS data
03-255	12 September 2003	21:43	DDS begin RTS data
03-256	13 September 2003	18:57	DDS end RTS data
03-263	20 September 2003	13:44	DDS begin RTS data
03-263	20 September 2003	14:26	DDS end RTS data
03-264	21 September 2003	12:10	DDS begin RTS data
03-264	21 September 2003	17:59	DDS end RTS data
03-264	21 September 2003	18:57	Galileo Jupiter impact, end of mission


See text for details. Abbreviations used: MRO: DDS memory readout; HV: channeltron high voltage step; EVD: event definition, ion- (I), channeltron- (C), or electron-channel (E); SSEN: detection thresholds, ICP, CCP, ECP and PCP; OTM: orbit trim maneuver; RTS: Realtime science.

2002 (Table 2). Details of the various data transmission modes and corresponding data rates of Galileo are also given in Table 4.

RTS data were usually obtained when Galileo was in the inner jovian system where relatively high dust impact rates occurred. During time intervals when Galileo was in the outer jovian magnetosphere dust data were usually received as instrument memory-readouts (MROs). MROs returned event data which had accumulated in the instrument memory over time. Although the entire memory was read out during an MRO, the number of data sets of new events that could be transmitted to Earth in a given time period was much smaller than with RTS data because MROs occurred much less frequently (Table 4). For further details about Galileo dust data transmission from the jovian system the reader is referred to Papers VI and VIII.

In 2000–2003, RTS and record data were obtained during a period of 570 days (Fig. 1) which amounts to about 40% of the total almost four-year period. During the remaining times when the dust instrument was operated in neither RTS nor record mode, a total of 59 MROs occurred at approximately two to three week intervals. Until the end of 2002, MROs were frequent enough so that usually no ambiguities in the timetagging occurred (i.e. MROs occurred at intervals smaller than 46 days).

The last MRO for the entire Galileo mission occurred at the end of 2002 on day 02-363. In 2003 we received dust data neither as MROs nor as record data. Only RTS data were received during rather short time intervals: about one week from 03-063 to 03-070 and a total time period of about two days between 03-255

Fig. 2. Spacecraft attitude: deviation of the antenna pointing direction (i.e. negative spin axis) from the Earth direction. The angles are given in ecliptic longitude (λ) and latitude (β , equinox 1950.0). Dashed vertical lines indicate satellite flybys (E26-A34) or Galileo's Jupiter impact (J35). Sharp spikes are associated with imaging observations with Galileo's cameras or orbit trim maneuvers with the spacecraft thrusters.

and 03-264 before the spacecraft hit Jupiter (Table 2). No dust data were obtained outside these intervals in 2003.

Several resets of the dust instrument's internal clock occurred during the long periods without data transmission in 2003, leading to ambiguities in the impact time of some dust impacts. One clock reset occurred during the first data gap between 02-363 and 03-063 and four resets in the second gap between 03-070 and 03-255. Furthermore, due to data transmission problems, the time tagging was lost for the events transmitted in the interval 03-063 to 03-070. Consequently, the impact time of two events which occurred between 02-363 and 03-063 is completely unknown. We have set their impact time to 03-030 (these grains are indicated by horizontal bars in Fig. 9). For seven data sets transmitted between 03-063 and 03-070 the impact time could be determined with an accuracy of approximately one day from the time tagging of test pulses that were routinely performed by the dust instrument (see also Section 5.4).

2.4. Dust instrument operation

During Galileo's earlier orbital mission about Jupiter strong channeltron noise was usually recorded while Galileo was within about 20 $R_{\rm J}$ distance from Jupiter (Jupiter radius, $R_{\rm J}$ =71,492 km). The details are described in Papers VI and VIII and are not repeated here. Furthermore, due to degradation of the

channeltron, the high voltage setting (HV) had to be raised two times in 1999 (Paper VIII). At the beginning of the year 2000, i.e. at the beginning of the time period considered in this paper, the dust instrument was operated in the following nominal configuration: the channeltron high voltage was set to 1250 V (HV=4), the event definition status was set such that only the ion-collector channel could initiate a measurement cycle (EVD=I) and the detection thresholds for the charges on the ion-collector, channeltron, electron-channel and entrance grid were set (SSEN=0, 1, 1, 1). This configuration effectively prevented dead time of the instrument due to channeltron noise (serious channeltron noise rates with CN > 10 occurred only during seven short time intervals in orbit A34 on day 02-309 when Galileo was inside Io's orbit and lasted only between several seconds and less than a minute. The resulting dead time is negligible because of its random occurrence and short duration). Due to degradation of the channeltron (Section 2.5) the channeltron high voltage was raised two additional times on days 00-309 and 01-352 in order to maintain a rather constant instrument sensitivity for dust impacts (Table 2).

During the Jupiter orbital tour of Galileo, orbit trim maneuvers (OTMs) were executed around perijove and apojove passages to target the spacecraft to close encounters with the Galilean moons. Many of these maneuvers required changes in the spacecraft attitude off the nominal Earth pointing direction (Fig. 2). Additionally, dedicated spacecraft turns occurred typically in the

Table 3Dust detector sensitive area and field-of-view (FOV) for different dust data sets.

Dust data set	FOV (°)	Sensor area (cm²)	Comment
Stream particles class 2	140	1000	Nominal target FOV Grün et al. (1992a)
Stream particles class 3	96	110	Reduced target FOV Krüger et al. (1999b)
All other	180	1000	Target plus side wall FOV Altobelli et al. (2004)

Table 4Details of Galileo dust data transmission modes during the Jupiter mission.

	Instrument channels ^a	Realtime scie	nce (RTS)	Record	MROs
		Low rate	High rate		
Data rate (bits s ⁻¹)		1.1	3.4	24	\sim 3 \times 10 ⁻³ b
Timing accuracy (min)		21.2	7.1	~ 1	259
Data frames per readout		7	7	7	46
Mission time coverage 1996 to 2003 (%)		\sim 40	\sim 40	< 0.1	\sim 60
Maximum event rate recordable by accumulators (min^{-1})	AC21/AC31 ^c	3000	9000	65,000	$pprox 2^{b}$
	All other	12	36	256	$\approx 0.01^{b}$
Maximum event rate for complete data set transmission (min ⁻¹)		1 21.2	1 7.1	~ 1	$pprox rac{46}{20\mathrm{days}}$

See text for details.

- ^a See Section 3.1 for a definition of these parameters.
- ^b One MRO every 20 days assumed.
- ^c Since 4 December 1996; the "All other" row was valid for all data before this time.

inner jovian system within a few days around perijove passage to allow for imaging observations with Galileo's cameras or to maintain the nominal Earth pointing direction.

In the time interval considered in this paper a total of five spacecraft anomalies (safings) occurred on days 00-055, 02-017, 02-047, 02-274, and 02-309 (Table 2). Three of these anomalies occurred in the inner jovian system in the region where the highest radiation levels were collected by the spacecraft, and recovery usually took several days. Although the dust instrument continued to measure dust impacts, the collected data could not be transmitted to Earth during the recovery and most of them were lost.

No reprogramming of the instrument's onboard computer was necessary in the 2000-2003 time interval. In fact, the last reprogramming for the entire Galileo mission took place on 4 December 1996 when two overflow counters were added to the two channels counting events with the lowest impact charges on the ion collector grid (the so-called amplitude range AR1) and the highest quality classes (classes 2 and 3). With these overflow counters, all accumulator overflows could be recognized in these two channels in the 2000-2003 interval. It is very unlikely that unrecognized overflows occurred in the higher amplitude ranges which counted bigger events with larger impact charges. The only exception is day 02-309 when Galileo was in the gossamer ring region and the instrument continued to collect data after the spacecraft anomaly (see also Section 5.5). Here unrecognized overflows have likely occurred in amplitude range AR1, class 1 (channel AC11) and amplitude range AR2, classes 0, 1 and 2, while the higher amplitude ranges AR3 and AR4 were most likely free of overflows in all four quality classes. See Section 3.1 for a description of the amplitude ranges and quality classes of dust impacts.

2.5. Dust instrument electronics degradation

Analysis of the impact charges and rise times measured by the dust instrument revealed strong degradation of the instrument electronics which was most likely caused by the harsh radiation environment in the inner jovian magnetosphere. A detailed analysis was published by Krüger et al. (2005). Here we recall

the most significant results: (a) the sensitivity of the instrument for dust impacts and noise had dropped; (b) the amplification of the charge amplifiers had degraded, leading to reduced impact charge values measured on the detector target and the ion collector grid, Q_E and Q_I , respectively; (c) drifts in the target and ion collector rise time signals lead to prolonged rise times t_E and t_I ; (d) degradation of the channeltron required increases in the channeltron high voltage (Table 2). The degradation affects the mass and speed calibration of the dust instrument and requires a time-dependent correction when comparing dust fluxes measured early in the Galileo Jupiter mission with later measurements.

After 2000, masses and speeds derived from the instrument calibration have to be taken with caution because the electronics degradation was very severe. Only in cases where impact speeds are known from other arguments can corrected masses of particles be derived (e.g. the dust cloud measurements in the vicinity of the Galilean moons or Galileo's gossamer ring passages). On the other hand, given the uncertainty in the impact calibration of a factor of two in speed and that of a factor of ten in mass, the increased uncertainty due to the electronics degradation was comparatively small before 2000 (it should be noted that the dust data until end 1999 published earlier-Papers II, IV, VI and VIII-remain unchanged). In particular, no corrections for dust fluxes, grain speeds and masses are necessary until end 1999 and results obtained with this data set in earlier publications remain valid. Beginning in 2000, however, the degradation became so severe that the calibrated speeds and masses have to be considered as lower and upper limits, respectively (see also Section 3.3).

3. Impact events

3.1. Event classification and noise

The dust instrument classified all events—real dust impacts and noise events—into one of 24 different categories (six amplitude ranges for the charge measured on the ion collector grid and four event classes) and counted them in 24 corresponding 8 bit

accumulators. The sensitive range of the dust instrument covered six orders in magnitude in impact charge, and the impacts were categorised according to the impact charge measured on the ion collector grid. The entire measurement range of six orders of magnitude was subdivided into six intervals, the so-called amplitude ranges, with each amplitude range covering one order of magnitude in impact charge. In addition, each event (dust impact or noise) was classified into one of four quality classes according to the quality of the impact charge and the rise time measurement of the impact signal. More detailed descriptions of the amplitude ranges and quality classes are given in Papers I and IV.

In interplanetary space most of the 24 categories were relatively free from noise and only sensitive to real dust impacts. The details of the noise behaviour in interplanetary space can be found in Papers II and IV.

In the extreme radiation environment of the jovian system, a different noise response of the instrument was recognized: especially within about 20 $R_{\rm I}$ from Jupiter class 1 and class 2 were contaminated with noise while class 3 was almost always noisefree (Krüger et al., 1999b). Analysis of the dust data set from Galileo's entire Jupiter mission showed that noise events could reliably be eliminated from class 2 (Krüger et al., 2005) while most class 1 events detected in the jovian environment showed signatures of being mostly noise events. For most of Galileo's Jupiter mission we therefore consider the class 3 and the noiseremoved class 2 impacts as the complete set of dust data. Apart from a missing third charge signal—class 3 has three charge signals and class 2 only two-there is no physical difference between dust impacts categorized into class 2 or class 3. In particular, we usually classify all class 1 and class 0 events detected in the jovian environment as noise.

The only exceptions are the passages through Jupiter's gossamer rings in 2002 and 2003 where a somewhat different noise response of the instrument was recognized (Moissl, 2005). Here, good dust impacts could also be identified in class 1. In Table 5 we show the noise identification scheme applied to the data from the gossamer ring passages obtained while Galileo was within Io's orbit.

To summarise, noise was removed from the data set we present here with two different criteria: data obtained outside Io's orbit were processed according to the criteria derived by Krüger et al. (2005), while data obtained inside Io's orbit were noise-removed with the criteria of Moissl (2005) (Table 5). Degradation of the instrument electronics was taken into account beginning in 1997 (Paper VIII). The derivation of the noise contamination factor f_{noi} for class 2 was described in Paper VI and is not repeated here.

In this paper the terms "small" and "big" have the same meaning as in Papers IV, VI and VIII (which is different from the terminology of Paper II). Here, we call all particles in the amplitude ranges two and higher (AR2-6) "big". Particles in the lowest amplitude range (AR1) are called "small". This distinction

Table 5Criteria for the separation of noise events in classes 1 and 2 from true dust impacts in the region within lo's orbit for Galileo orbits A34 and J35 (gossamer ring passages).

Class, AR	EA—IA		CA	EIC
Class 1, AR1 Class 1, AR2-6 Class 2, AR1 Class 2, AR2-6	$\leq 2 \text{ or } \geq 9$ $\leq 2 \text{ or } \geq 9$ - < 1 or > 7	or and and	≤ 2 ≤ 2 - < 2	- - = 0

Noise events in the lowest amplitude range (AR1) fulfill at least one of the criteria listed, whereas noise events in the higher ranges fulfill two criteria (from Moissl, 2005).

separates the small jovian dust stream particles from bigger grains which are mostly detected between the Galilean moons (see also Section 3.2). It should be noted that no impact events (neither dust impacts nor noise) were detected in amplitude ranges AR5 and AR6 in the time interval 2000 to 2003 considered in this paper. This is most likely caused by the degradation of the dust instrument electronics (cf. Section 2.5).

Table 6 lists the number of all dust impacts and noise events identified with the dust instrument in the 2000-2003 interval as deduced from the accumulators of classes 2 and 3. Depending on the event rate the numbers are given in intervals from half a day to a few weeks (the numbers with the highest time resolution are available in electronic form only and are provided to the data archiving centres). For impacts in these two classes in the lowest amplitude range AR1 the complete data sets for only 2% of all detected events were transmitted, the remaining 98% of events were only counted. About 32% of all data sets for events in the higher amplitude ranges were transmitted. We give only the number of events in classes 2 and 3 because they have been shown to contain real dust impacts during the entire Jupiter mission: class 3 is almost always noise free (although Krüger et al., 1999b found indications for a very small number of noise events in class 3, AR1, in the inner jovian system). Class 2 is strongly contaminated by noise events in the inner jovian system within about 15 $R_{\rm I}$ from Jupiter.

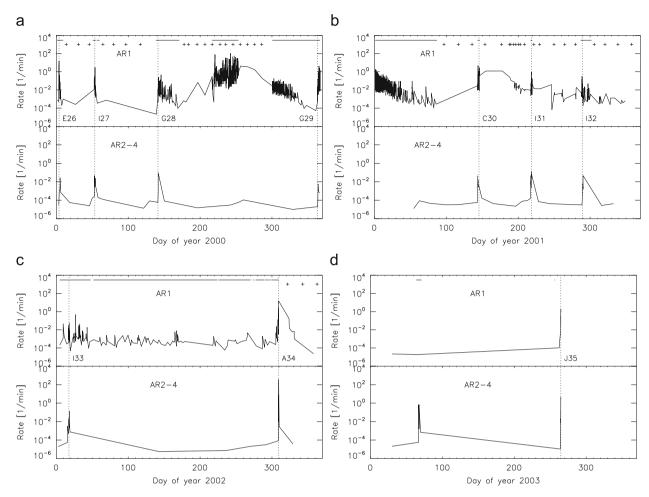
In the 2000–2003 interval Galileo had a total of eight targeted flybys at the Galilean moons plus one at Amalthea (Table 2). During the flybys at the Galilean moons no ejecta particles from the moons could be detected because of unfavourable detection geometry. During the Amalthea flyby in A34, however, the dust instrument had the right detection geometry. Taking the recently determined mass of Amalthea (Anderson et al., 2005), its Hill radius is $r_{\rm Hill} \sim 130\,\rm km$, only slightly larger than the moon itself. Galileo's closest approach distance was 244 km from the moon's centre so that the spacecraft did not cross the Hill sphere where an increased dust density was expected. In fact, no increase in the dust impact rate could be identified, consistent with our expectations (Krüger et al., 2009).

3.2. Dust impact rates

Fig. 3 shows the dust impact rate recorded by the dust instrument in 2000–2003 as deduced from the class 2 and 3 accumulators. The impact rate measured in the lowest amplitude range (AR1) and the one measured in the higher amplitude ranges (AR2-6) are shown separately because they reflect two distinct populations of dust. Until early 2002 AR1 contains mostly stream particles which were measured throughout the jovian system. Bigger particles (AR2-6) were mostly detected in the region between the Galilean moons.

Between the perijove passages I33 and A34 in 2002 a low background rate of a few times 10^{-4} min⁻¹ was measured in AR1 which is at least an order of magnitude higher than dust impact rates measured with Galileo and Ulysses in interplanetary space (Grün et al., 1997b). These impacts show a broad distribution over all rotation angles (Fig. 9) while stream particles were expected to approach from rotation angles around 90° most of the time in 2002, similar to the earlier Galileo orbits in 2000 and 2001. These grains could be stream particles approaching from a much broader range of directions as was reported from the dust measurements with Cassini during Jupiter flyby (Hsu et al., 2009).

During the gossamer ring passages impacts were measured in all amplitude ranges AR1-4 (Section 5.5). Note that the impact rate in AR1 was usually at least one to two orders of magnitude higher than that for the big particles. Diagrams showing the AR1


Table 6Overview of dust impacts accumulated with Galileo DDS between 1 January 2000 and 21 September 2003.

Date	Time	$D_{Jup}\left(R_{J}\right)$	Δt (d)	$f_{\text{noi},\text{AC21}}$	AC 21 ^a	AC 31 ^a	$f_{noi,AC22} \\$	AC 22	AC 32	$f_{\text{noi},\text{AC23}}$	AC 23	AC 33	$f_{noi,\text{AC24}}$	AC 24	AC 34
00-002	23:46	19.28	21.06	0.81	8	-	-	-	-	-	-	-	-	-	-
00-003	21:55	7.370	0.922	0.27	521	40	0.00	1	-	-	-	-	-	-	_
00-005	10:08	20.76	1.508	0.54	552	9	0.50	2	1	0.00	1	2	-	-	-
00-052	15:19	15.96	47.21	0.77	47	-	0.00	1	1	-	-	-	0.00	1	1
00-053	10:26	6.120	0.796	0.56	301	8	0.00	4	1	-	-	-	-	-	-
00-056	22:40	42.65	3.510	0.80	869	-	0.80	20	2	-	-	-	0.00	3	2
00-074	20:37	126.1	17.91	0.59	17	_	0.50	2	1	0.00	1	-	-	_	_
00-141	14:34	12.54	66.74	0.96	20	2	0.25	4	-	-	-	-	-	-	_
00-143	23:11	27.10	2.359	0.50	209	-	0.00	2	-	-	-	-	-	-	_
00-149	19:41	76.24	5.853	0.10	89	3	-	-	-	-	-	-	-	-	-
00-177	07:37	193.7	27.49	0.23	42	3	0.50	2	_	-	_	-	_	_	_
00-206	19:08	256.7	29.47	0.72	5383	160	-	_	_	_	_	1	_	_	_
00-216	23:50	270.0	10.19	0.00	4422	115	_	_	_	_	_	_	_	_	_
00-220	17:43	274.0	3.745	0.00	13922	522	1.00	1	_	_	_	_	_	_	_
00-222	23:09	276.2	2.226	0.00	3964	219	-	-	_	_	_	_	_	_	_
00 222	23.03	270.2	2.220	0.00	3301	213									
00-228	05:08	280.6	5.249	0.00	2648	203	_	_	_	_	_	_	_	_	_
00-231	18:47	283.1	3.568	0.00	5590	424	_	_	_	_	_	_	_	_	_
00-236	10:15	285.7	4.644	0.00	10750	842	_	_	_	_	_	_	_	_	_
00-246	03:28	289.1	9.717	0.00	33125	3489	0.00	2	_	_	_			_	_
00-240	11:57	289.6	10.35	0.01	49616	3149	0.00	1	_	_	_	_	_	_	_
00-230	11.57	209.0	10.55	0.01	45010	3143	0.00	1	_	_	_	-	_	_	_
00-266	13:29	287.1	10.06	0.00	47774	2768	_	_	1	_	_	_	_	_	_
00-200	00:28	281.8	9.457	0.00	17821	5196	_							_	
00-270	11:26	254.7	24.45	0.00	3200	163	_	_	_	=	=	_	_	_	_
00-306	12:10	244.7	6.030	0.00	161	3	_	_	_	=	_	_	_	_	_
	08:51	200.4	19.86	0.01	223	9	_	_	-	-	_	_	_	_	_
00-326	06.31	200.4	19.00	0.05	223	9	-	_	_	_	-	-	-	-	_
00-363	16:33	10.84	37.32	0.37	68	1	0.00	1	1						
00-366	00:28	27.62	2.329	0.18	1014	41	0.00	3	1	=	=	_	_	_	_
									_	- 0.00	-	-	_	_	_
00-366	23:49	37.39	0.973	0.04	345	19	-	-	-	0.00	1	_	_	-	-
01-002	14:24	51.27	0.607	0.09	513	47	-	-	-	-	-	-	_	-	-
01-006	08:59	77.49	3.774	0.00	661	47	-	-	-	-	-	_	-	-	-
01 010	12,20	100 F	1107	0.05	212	15									
01-010	13:29	100.5	4.187	0.05	312	15	_	_	_	-	_	_	_	_	_
01-015	12:45	122.8	4.969	0.02	373	17	-	-	-	-	-	-	_	-	-
01-026	00:22	158.6	10.48	0.07	365	24	-	-	-	-	-	-	-	-	-
01-040	21:05	191.8	14.86	0.09	87	4	-	-	-	-	-	_	-	-	-
01-096	14:04	198.7	55.70	0.11	59	3	0.33	3	-	-	-	1	_	-	-
01 142	15.55	7 200	47.07	0.40	22.45	45	0.44	0	2						
01-143	15:55	7.390	47.07	0.40	3245	45	0.44	9	2	-	-	-	-	-	-
01-146	06:32	34.34	2.609	0.60	2913	129	0.18	11	1	-	-	-	0.00	2	-
01-154	16:58	87.12	8.434	0.18	16888	756	0.00	1	-	-	-	-	-	-	-
01-177	20:07	136.1	23.13	0.00	38739	1940	0.00	1	-	-	-	-	-	-	-
01-194	13:03	124.8	16.70	0.00	4139	386	_	_	_	_	_	_	_	_	_

01-209 01-218	11:19 07:24	76.61 6.280	14.92 8.836	0.01 0.47	394 351	31 6	0.00	1 5	1 4	- 0.00	- 1	- 1	- 0.33	- 3	- 2
01-221	21:01	44.16	3.567	0.45	207	8	0.33	6	_	-	_	_	0.00	2	_
01-246	07:41	128.5	24.44	0.01	509	9	0.00	1	_	_	_	1	_	_	_
01-288	01:25	16.92	41.73	0.06	243	14	_	_	_	_	_	_	_	_	_
01-291	11:32	34.37	3.420	0.73	303	1	0.00	2	2	0.00	2	-	0.50	2	-
01-314	06:23	137.8	22.78	0.33	51	-	-	-	-	-	-	-	-	-	-
01-348	23:00	152.6	34.69	0.33	19	1	0.00	2	-	-	-	-	-	-	-
02-017	02:52	12.09	33.16	0.57	36	-	0.00	1	-	-	-	1	0.00	2	1
02-018	00:32	8.820	0.902	0.86	341	_	0.00	1	2	-	-	_	0.00	2	2
02-032	03:41	118.4	14.13	0.51	80	3	0.20	5	2	0.00	1	_	_	_	_
02-069	12:20	247.7	37.36	0.30	47	1	-	_	_	-	_	_	_	_	_
02-106	03:02	312.8	36.61	0.48	23	_	_	_	_	_	_	_	_	_	_
02-151	13:43	346.5	45.44	0.17	29	1	0.00	1	_	_	_	_	_	_	_
02-184	10:32	343.9	32.86	0.27	22	_	_	_	_	_	_	_	_	_	_
02-222	06:37	312.7	37.83	0.88	24	1	-	-	-	-	-	-	-	-	-
02-265	21:04	228.9	43.60	0.51	19	3	-	-	1	-	-	-	-	-	-
02-306	10:19	42.73	40.55	0.06	18	-	0.00	1	-	-	-	1	-	-	-
02-308	21:03	11.18	2.447	0.52	55	3	-	-	2	-	-	1	-	-	-
02-309	04:21	4.540	0.304	0.80	17	_	0.00	2	2	0.00	3	1	-	-	2
02-309	05:32	3.320	0.048	0.83	77	_	_	_	_	0.00	2	_	_	_	_
02-309	06:34	2.410	0.043	0.83	512	5	0.14	21	1	0.00	21	1	0.00	15	5
02-323	16:36	121.7	14.41	0.67	9841	80	0.00	191	2	0.00	46	_	0.00	62	2
02-357	20:16	245.2	34.15	0.04	92	6	-	-	_	-	-	_	-	-	1
03-066	18:08	357.0	73.91	0.86	11	1	_	_	_	_	_	_	_	_	2
						-									_
03-262	11:23	38.06	195.7	0.00	28	1	0.00	2	5	0.00	1	-	-	-	1
03-264	14:11	7.190	2.117	0.00	36	-	0.00	14	1	-	-	-	0.00	1	1
03-264	15:43	5.500	0.063	0.53	41	-	-	-	1	0.00	1	2	-	-	1
03-264	17:59	2.540	0.094	0.53	124	-	0.00	45	8	0.42	26	10	0.12	68	36
Events (cou	inted)			_	284545	20976	_	372	45	_	107	23	_	163	59
	omplete data)		_	3291	1865	_	68	38	_	36	16	_	26	28
	complete data			0.22	4229	1865	0.28	95	41	0.05	38	16	0.07	28	28
7111 CVCIII3(C	complete dat	u)		0.22	7223	1005	0.20	33	71	0.03	30	10	0.07	20	20

The jovicentric distance D_{Jup} , the length of the time interval Δt (days) from the previous table entry, and the corresponding numbers of impacts are given for the class 2 and 3 accumulators. The accumulators are arranged with increasing signal amplitude ranges (AR), e.g. AC31 means counter for CLN=3 and AR=1. The determination of the noise contamination f_{noi} in class 2 is described in Paper VI. The Δt in the first line (day 00-002) is the time interval counted from the last entry in Table 2 in Paper VIII. The totals of counted impacts, of impacts with complete data, and of all events (noise plus impact events) for the entire period are given as well. f_{noi} has been estimated from the data sets transmitted.

^a AC21 and AC31: Overflows of the 8 bit accumulators were counted with overflow counters so that no unrecognized overflows occurred in these two channels.

Fig. 3. Dust impact rate detected in 2000–2003. For each year the top panel shows the impact rate in AR1 and the bottom panel that for the higher amplitude ranges AR2–4 (no impacts were detected in AR5 and AR6 in the time interval considered in this paper). Only data for classes 2 and 3 are shown. Dotted lines indicate satellite flybys (E26–A34) or Galileo's Jupiter impact (J35). Perijove passages occurred within two days of the moon closest approaches. These curves are plotted from the number of impacts with the highest time resolution which is available only in electronic form. No smoothing was applied to the data. In the top panels (AR1), time intervals with continuous RTS coverage are indicated by horizontal bars, memory readouts (MR0s) are marked by crosses.

impact rate with a much higher time resolution in the inner jovian system are given in Fig. 4, and Galileo's gossamer ring passages are discussed in detail by Krüger et al. (2009).

In the inner jovian system the impact rates of AR1 particles frequently exceeded $10 \, \mathrm{min^{-1}}$. An exceptionally large dust impact rate was recorded during the orbit G28 in the outer jovian system when Galileo was approximately 280 R_{J} away from Jupiter (Section 5.2 and Fig. 12). This represents one of the highest dust ejection rates of lo recorded during the entire Galileo Jupiter mission and is likely connected with a single strong volcanic eruption on Io (Krüger et al., 2003a; Geissler et al., 2004).

3.3. Event tables

Table 7 lists the data sets for all 224 big particles detected between 1 January 2000 and 21 September 2003 for which the complete information exists. Class 1 and class 2 particles were separated from noise by applying the criteria developed by Krüger et al. (1999b, 2005) and Moissl (2005) (Section 3.1). We do not list the small stream particles (AR1) in Table 7 because their masses and velocities are outside the calibrated range of the dust instrument and they are by far too numerous to be listed here. The complete information of a total of 5165 small (AR1) dust particles was transmitted in 2000–2003. These are mostly stream particles which are believed to be about 10 nm in size and their

velocities exceed 200 km s⁻¹ (Zook et al., 1996). Any masses and velocities derived for these particles with existing calibration algorithms would be unreliable. The full data set for all 5389 particles is submitted to the data archiving centres and is available in electronic form. A total number of 7566 events (dust plus noise in all amplitude ranges and classes) were transmitted in 2000–2003, each with a complete data set.

In Table 7 dust particles are identified by their sequence number and their impact time. Gaps in the sequence number are due to the omission of the small particles. The time error value (TEV) which was introduced for the data set from the Jupiter mission because of the large differences in the timing accuracy of the dust instrument in the various data readout modes is listed next (see Table 4 and Paper VI for details). Then the event category—class (CLN) and amplitude range (AR)—are given. Raw data as transmitted to Earth are displayed in the next columns: sector value (SEC) which is the spacecraft spin orientation at the time of impact, impact charge numbers (IA, EA, CA) and rise times (IT, ET), time difference and coincidence of electron and ion signals (EIT, EIC), coincidence of ion and channeltron signal (IIC), charge reading at the entrance grid (PA) and time (PET) between this signal and the impact. Then the instrument configuration is given: event definition (EVD), charge sensing thresholds (ICP, ECP, CCP, PCP) and channeltron high voltage step (HV). See Paper I for further explanation of the instrument parameters, except TEV which was introduced in Paper VI.

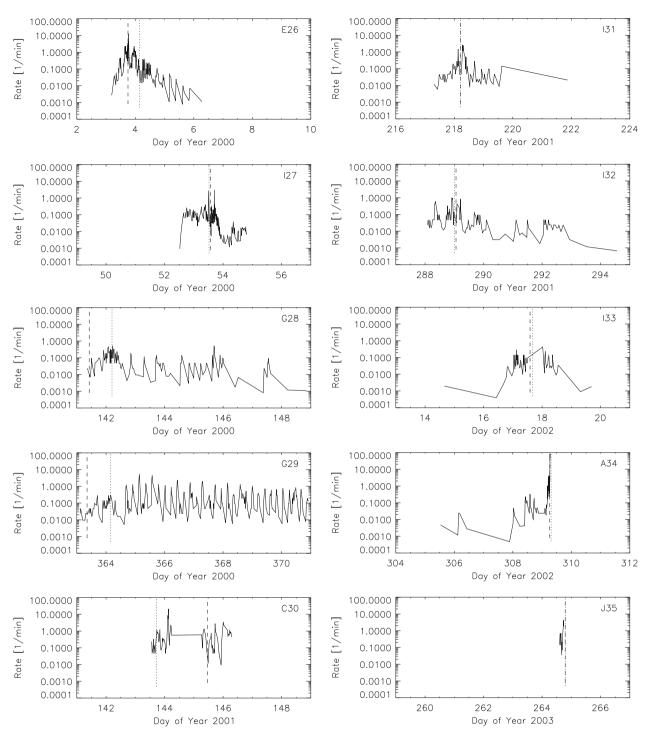


Fig. 4. Dust impact rate detected in the inner jovian system in higher time resolution. An eight-day interval is shown in each panel. Only data for AR1 (classes 2 and 3) are shown. Dotted lines indicate perijove passages of Galileo, dashed lines satellite closest approaches (E26-A34) or Jupiter impact (J35).

The next four columns in Table 7 give information about Galileo's orbit: ecliptic longitude and latitude (LON, LAT) and distance from Jupiter (D_{Jup} , in R_J). The next column gives the rotation angle (ROT) as described in Section 2. Whenever this value is unknown, ROT is arbitrarily set to 999. This occurs 71 times in the full data set that includes the small particles. Then follows the pointing direction of the instrument at the time of particle impact in ecliptic longitude and latitude (S_{LON} , S_{LAT}). When ROT is not valid, S_{LON} and S_{LAT} are also useless and set to 999. Mean impact velocity (ν) and velocity error factor (VEF, i.e. multiply or divide stated velocity by VEF to obtain upper or lower

limits) as well as mean particle mass (m) and mass error factor (MEF) are given in the last columns. For VEF > 6, both velocity and mass estimates are invalid and should be discarded.

Beginning in 2000 the degradation of the dust instrument electronics became very severe, leading to artificially too long rise times and reduced charge amplitudes. The calibrated mass and speed values for VEF < 6 listed in Table 7 should thus be considered as lower limits for the impact velocity and upper limits for the particle mass throughout the 2000–2003 interval.

No intrinsic dust charge values are given (Svestka et al., 1996). Even though the charge carried by the dust grains is expected to

Table 7Number, impact time, TEV (in minutes) CLN, AR, SEC, IA, EA, CA, IT, ET, EIT, EIC, ICC, PA, PET, EVD, ICP, ECP, CCP, PCP, HV and evaluated data: LON, LAT, D_{Jup} (in R_J), rotation angle (ROT), instr. pointing (S_{LON} , S_{LAT}), speed v (in km s⁻¹), speed error factor (VEF), mass m (in g) and mass error factor (MEF). Velocity and mass should be considered as lower and upper limits for the true values, respectively, because of the strong degradation of the dust instrument electronics (see text for details).

No.	IMP. DATE	TEV	CLN	AR	SEC	IA	EA	CA	IT	ET	EIT	EIC	ICC	PA	PET	EVD	ICP	ECP	ССР	PCP	HV	LON	LAT	D_{Jup}	ROT	S _{LON}	S _{LAT}	V	VEF	M	MEF
15881	00-003 12:24:10	8	2	2	188	9	4	3	15	11	11	0	0	8	0	5	0	1	1	1	4	35.8	-1.2	12.631	186	17	-55	2.0	19	3.9 × 10 ⁻¹¹	10.5
	00-004 02:52:43		3	3	133				11		8	0	1	41	0	5	0	1	1	1	4		-1.2	5.808	263	330	-5	5.2		8.3×10^{-11}	10.3
16038	00-005 01:17:30	22	2	3	117	22	14	8	9	14	0	1	1	38	12	5	0	1	1	1	4	35.8	-1.2	16.274	285	331	12	7.2	1.9	1.4×10^{-11}	10.5
16041	00-005 05:11:04	22	3	3	174	20			13	1	8	0	1	41	0	5	0	1	1	1	4		-1.2	18.306		353	-48	2.0		3.8×10^{-10}	10.5
16042	00-005 05:48:29	259	3	2	111	8	27	9	14	15	8	0	1	47	1	5	0	1	1	1	4	35.8	-1.2	18.623	294	333	19	2.0	1.9	9.6×10^{-10}	10.5
16047	00-006 06:18:37	22	3	2	153	13	21	19	12	11	8	0	1	38	0	5	0	1	1	1	4	35.9	-1.2	29.696	235	335	-28	4.5	19	4.2×10^{-11}	10.5
	00-046 02:20:57	259		4		27	31	22		12	4	1	1	14	9	5	0	1	1	1	4		-1.1	65.806	142	71	-40	2.0		2.6×10^{-08}	10.5
16052	00-050 01:15:31	259	3	4	21	30	50	4	13	12	9	0	1	27	0	5	0	1	1	1	4	39.9	-1.1	41.387	60	80	23	2.0		8.6×10^{-08}	10.5
16066	00-052 19:13:01	22	3	2	196	10	49	4	12	12	7	0	1	25	1	5	0	1	1	1	4	40.3	-1.1	13.836	174	37	-55	4.5		1.8×10^{-10}	10.5
16080	00-053 01:35:12	22	2	2	225	8	4	3	15	14	11	0	0	4	23	5	0	1	1	1	4	40.3	-1.1	10.244	134	76	-34	2.0	1.9	3.3×10^{-11}	10.5
16082	00-053 01:56:26	22	2	2	236	9	21	5	15	15	12	0	0	9	28	5	0	1	1	1	4	40.3	-1.1	10.044	118	81	-22	2.0	1.9	4.2×10^{-10}	10.5
	00-053 03:42:37	22		2	249	9	4	3		14	11	0	0	6	0	5	0	1	1	1	4	40.3	-1.1	9.055	100	84	-8	2.0	1.9	3.9×10^{-11}	10.5
16103	00-053 17:01:24	8	2	2	149	9	11	5	14	15	0	1	1	47	31	5	0	1	1	1	4	40.4	-1.1	6.844	240	338	-23	2.1	1.6	9.1×10^{-11}	6.0
	00-053 17:50:57		2	4	255						4	1	1	28	1	5	0	1	1	1	4		-1.1	7.202	91	84	-1	2.0		5.0×10^{-07}	10.5
16107	00-053 18:33:25	8	3	4	143	30	30	28	12	10	5	0	1	46	0	5	0	1	1	1	4	40.4	-1.1	7.536	249	336	-17	2.0	1.9	3.7×10^{-08}	10.5
16111	00-053 23:30:40	22	2	2	74	11	13	4	14	15	0	1	1	43	14	5	0	1	1	1	4	40.3	-1.1	10.247	346	10	52	2.1	1.6	1.7×10^{-10}	6.0
16113	00-054 06:56:34	22	3	2	24	11	50	12	13	13	7	0	1	26	1	5	0	1	1	1	4	40.3	-1.1	14.540	56	79	26	2.3		3.0×10^{-09}	10.5
	00-054 08:21:30	22		2	50	13				12	6	0	1	26	1	5	0	1	1	1	4		-1.1	15.337	20	54	49	4.5		4.5×10^{-10}	10.5
	00-054 11:53:49	22		2	211	8	10				10	0	0	3	26	5	0	1	1	1	4		-1.1	17.284		62	-47	5.9		2.0×10^{-12}	6.0
16117	00-054 13:18:45	22	3	4	157	30	54	25	13	12	5	0	1	46	0	5	0	1	1	1	4	40.3	-1.1	18.046	229	341	-32	2.0	1.9	1.4×10^{-07}	10.5
16118	00-054 15:26:10	22	2	2	66	8	10	0	12	7	10	0	0	4	27	5	0	1	1	1	4	40.3	-1.1	19.167	357	25	54	15.9	3.7	1.3×10^{-13}	106.8
16119	00-055 02:04:11	259	2	2	228	9	12	0	12	10	10	0	0	4	26	5	0	1	1	1	4	40.3	-1.1	24.470	129	79	-30	10.9		5.5×10^{-13}	14.2
	00-058 01:55:34	22		2		11			14		6	0	1	42	8	5	0	1	1	1	4		-1.1	51.750	27	61	46	2.1		2.3×10^{-10}	6.0
	00-063 04:11:32	259		2	167	8	10		12			0	0	2	22	5	0	1	1	1	4		-1.1	83.010		349	-42	9.5		4.7×10^{-13}	7.6
16124	00-070 04:27:03	259	2	3	138	21	14	7	10	15	0	1	1	45	31	5	0	1	1	1	4	41.3	-1.1	112.177	256	335	-11	4.5	1.9	5.1×10^{-11}	10.5
16125	00-109 08:54:08	259	2	2	68	8	14	0	13	14	7	0	0	38	1	5	0	1	1	1	4	44.7	-1.1	147.606	354	30	54	2.7	1.6	4.8×10^{-11}	6.0
16127	00-121 09:56:42	259	2	2	178	13	22	14	14	15	15	0	1	17	1	5	0	1	1	1	4	46.0	-1.0	124.594	200	20	-50	2.0	1.9	9.5×10^{-10}	10.5
	00-129 16:23:32	259		2	16	10		11		10	15	0	1	11	2	5	0	1	1	1	4	46.9	-1.0	96.258	68	98	18	10.9		7.6×10^{-13}	14.2
	00-141 08:59:32	22		2		11			12		7		0	26	1	5	0	1	1	1	4		-1.0	15.647			33	4.5		2.9×10^{-10}	10.5
16134	00-141 18:17:11	22	2	2	59	9	20	6	15	14	11	0	0	19	0	5	0	1	1	1	4	48.4	-1.0	10.473	7	56	54	2.0	1.9	3.5×10^{-10}	10.5
16135	00-141 18:27:48	22	2	2	141	9	15	4	15	0	8	0	0	37	31	5	0	1	1	1	4	48.4	-1.0	10.377	252	352	-14	2.0	1.9	2.3×10^{-10}	10.5
16283	00-195 19:58:14	259	3	3	69	20	21	11	10	11	6	0	1	13	1	5	0	1	1	1	5	51.9	-1.0	238.002	353	51	54	4.5		9.3×10^{-11}	10.5
	00-219 15:53:18	22		2	194	8	4			14	11	0	0	6	31	5	0	1	1	1	5		-0.9	272.964		65	-55	2.3		1.8×10^{-11}	10.5
	00-242 05:00:03	259		2	43	10				14		1	1	0	0	5	0	1	1	1	5		-0.9	288.137	30	104	45	3.8		1.5×10^{-11}	6.0
18056	00-242 05:01:04	259	2	2	214	8	10	18	12	14	1	1	1	5	31	5	0	1	1	1	5	55.8	-0.9	288.137	149	106	-44	3.8	1.6	7.9×10^{-12}	6.0
18880	00-253 17:06:45	259	2	2	39	8	3	14	12	10	0	1	1	3	31	5	0	1	1	1	5	56.8	-0.9	289.854	35	108	42	4.5	1.9	1.5×10^{-12}	10.5
18897	00-260 04:24:34	259	3	2	75	8	14	7	13	14	6	0	1	37	0	5	0	1	1	1	5	57.4	-0.9	289.088	345	48	52	2.7		4.8×10^{-11}	6.0
	00-363 15:50:50	22		2	61	10	49	7		13	7	0	1	26	1	5	0	1	1	1	5	68.2	-0.7	11.175	4	64	60	2.3			10.5
	00-364 01:45:21	22		2	166	9	12	3		14	13	0	0	8	7	5	0	1	1	1	5		-0.7	7.596		20	-36	2.5	1.6	5.4×10^{-11}	6.0
19349	00-364 04:35:14	22	2	2	60	11	25	3	13	15	5	0	0	20	1	5	0	1	1	1	5	68.2	-0.7	7.539	6	67	60	2.3	1.9	6.2×10^{-10}	10.5

19368 00-364 22:16:54 19414 00-366 01:23:46 20394 01-054 15:37:37 20408 01-077 21:42:34 20415 01-092 19:28:24	22 2 2 259 2 3 22 2 2 22 3 3 259 2 2	115 20 13 3 55 15 20 0 165 21 26 12	14 14 13 0 0	10 31 5 0 11 0 5 1 43 0 5	0 1 1 5 0 1 1 5	68.3 -0.7 14.891 357 53 68.3 -0.7 28.040 288 2 72.0 -0.6 209.299 13 78 74.0 -0.5 215.070 218 19 75.4 -0.5 203.645 110 114	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
20435 01-119 14:15:13 20451 01-143 07:42:40 20453 01-143 15:12:36 20455 01-143 16:58:47 20456 01-143 18:02:29	259 3 2 259 3 2 22 2 2 64 2 2 22 2 4	238 10 30 5	1 12 13 7 0 1 1 15 11 14 0 0 1 12 11 7 0 1	26 1 5 0 13 3 5 1 26 1 5	0 1 1 5 0 1 1 5	78.0 -0.5 147.493 113 125 80.9 -0.4 10.240 264 27 80.9 -0.4 7.491 194 63 81.0 -0.4 7.291 115 133 81.0 -0.4 7.287 266 27	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
20458 01-143 18:23:43 20461 01-143 23:20:58 20467 01-144 02:53:19 20472 01-144 04:18:15 20475 01-144 05:21:57	22 2 2 22 2 4 22 2 2 22 2 2 22 2 2	83 30 9 24 55 11 5 3	12 15 15 0 1 12 11 7 0 0	28 1 5 26 0 5 0 26 1 5	0 1 1 5 0 1 1 5	81.0 -0.4 7.306 259 27 81.0 -0.4 8.473 333 47 81.0 -0.4 9.998 13 100 81.0 -0.4 10.687 343 58 81.0 -0.4 11.220 55 132	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
20478 01-144 09:35:57 20482 01-144 22:32:29 20487 01-145 07:11:10 20540 01-149 10:24:05 20624 01-196 12:40:34	259 2 2 259 3 2 22 2 2 259 2 2 259 3 2	55 10 22 3 187 8 30 3 27 15 7 8	13 12 7 0 0 3 0 15 13 0 0	5 0 5 0 25 8 5 0 5 31 5	0 1 1 5 0 1 1 5	81.0 -0.4 13.423 120 132 81.0 -0.4 20.129 13 100 81.0 -0.4 24.328 187 72 81.2 -0.4 58.949 52 131 84.9 -0.3 120.888 96 144	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
20671 01-205 12:23:30 20688 01-212 21:15:24 20691 01-217 04:47:40 20692 01-217 06:09:54 20693 01-217 08:45:16	259 2 2 259 3 3 259 3 4 259 3 2 22 2 2	212 23 10 5 218 27 30 27 208 8 26 12	8 12 6 0 1	26 3 5 59 0 5 47 1 5	0 1 1 5 0 1 1 5	85.8 -0.3 94.336 128 141 86.6 -0.3 56.506 152 127 87.2 -0.3 17.719 143 133 87.2 -0.3 16.987 158 121 87.2 -0.3 15.577 70 146	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
20694 01-217 13:21:19 20695 01-217 14:25:01 20696 01-217 15:28:43 20697 01-217 17:57:20 20698 01-217 22:12:09	22 3 4 22 3 2 22 2 2 22 2 3 22 3 2	230 12 20 5 40 8 31 4 130 22 25 14	5 15 13 5 0 1 1 13 14 8 0 0	47 11 5 0 26 1 5 1 17 29 5	0 1 1 1 5 0 1 1 5	87.2 -0.3 12.994 129 141 87.3 -0.3 12.386 127 142 87.3 -0.3 11.775 34 131 87.3 -0.3 10.349 267 38 87.3 -0.3 8.007 149 129	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
20701 01-217 22:54:37 20714 01-218 06:41:45 20715 01-218 07:02:59 20716 01-218 07:24:13 20717 01-218 07:45:27	22 3 2 22 2 4 22 2 2 22 2 4 22 2 2	143 30 60 24 225 8 21 3 215 30 4 24	13 11 6 0 0 1 13 15 15 0 1	28 1 5 0 10 1 5 1 27 0 5	0 1 1 1 5 0 1 1 5	87.3 -0.3 7.652 1 95 87.4 -0.3 6.111 249 39 87.4 -0.3 6.187 134 139 87.4 -0.3 6.276 148 130 87.4 -0.3 6.377 139 136	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
20727 01-219 00:02:10 20752 01-228 03:57:12 20764 01-244 21:09:41 20807 01-288 14:31:31 20808 01-288 15:56:27	22 2 2 259 2 2 259 3 3 22 2 4 22 2 3	24 8 14 10 54 22 28 10	15 7 5 0 1 1 13 11 0 1 1	39 0 5 46 1 5 1 14 5	0 1 1 1 5 0 1 1 5	87.4 -0.3 15.000 101 147 87.9 -0.3 82.021 56 146 89.1 -0.2 126.938 14 116 93.3 -0.1 9.456 203 75 93.3 -0.1 8.655 51 151	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
20809 01-288 15:56:27 20821 01-289 15:39:06 20823 01-289 18:07:43 20824 01-290 05:05:57 20825 01-290 05:27:11	22 2 4 22 3 2 22 2 2 22 2 3 22 3 2	47 30 29 24 167 9 49 7 71 8 12 10 32 21 22 7 146 8 50 10	1 14 13 9 0 1 0 15 15 12 0 0 1 14 11 0 1 1	26 1 5 0 15 28 5 1 46 30 5	0 1 1 1 5 0 1 1 5	93.3 -0.1 8.655 24 133 93.5 -0.2 13.175 215 64 93.5 -0.2 14.603 350 90 93.5 -0.2 20.551 45 149 93.5 -0.2 20.733 245 51	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 7 (continued)																														
No.	IMP. DATE	TEV	CLN	AR	SEC	IA	EA	CA	IT	ET	EIT	EIC	ICC	PA	PET	EVD	ICP	ECP	ССР	PCP	HV	LON	LAT	D_{Jup}	ROT	S _{LON}	S _{LAT}	V	VEF	M	MEF
20863 20867 20877	01-290 05:48:25 01-316 01:32:08 01-332 14:25:42 02-002 19:59:10 02-015 08:17:10	22 259 259 259 8	2 2 2	2 2 2 4 4	183 21 238 107 20	8 14 24	12 6 22 22 53	6 14 14	13 13 14 15 14		9 11 0 0 0	0 0 1 1 1	0 0 1 1 1	11 4 59 19 11	4 31 27 19 4	5 5 5 5 5	0 0 0 0	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	5 5 6 6 6	93.5 95.1 96.4 99.5 100.9	-0.2 -0.1 -0.1 0.0 0.0	20.914 141.637 160.228 107.169 33.272	60 115 300	86 155 156 48 149	-52 24 -20 24 23	2.7 2.3 2.0 2.0 2.0	1.9 1.9 1.9	3.4×10^{-11} 2.5×10^{-11} 1.1×10^{-09} 4.1×10^{-09} 1.2×10^{-07}	10.5 10.5 10.5
20892 20893 20897	02-015 13:28:34 02-016 22:44:31 02-017 02:38:04 02-017 07:56:35 02-017 08:39:03	8 8 8		3 2 4 4 4	45 234 0 236 227	11 24 29	25 4 29 29 27	12 12 21 19 25	14 15 11	11 13 9 11 11	9 0 5 5 9	0 1 0 0 0	1 1 1 1 1	42 45 46 46 9	0 28 1 0	5 5 5 5 5	0 0 0 0	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	6 6 6 6	100.9 101.2 101.2 101.2 101.2	0.0 0.0 0.0 0.0 0.0	31.075 14.523 12.217 9.006 8.586	27 121 999 118 131	130 148 999 149 144	47 -24 999 -22 -31	4.2 2.0 6.4 2.3 3.9	1.9 3.1 1.9	3.2×10^{-10} 5.3×10^{-11} 2.2×10^{-10} 1.5×10^{-08} 7.6×10^{-10}	10.5 58.7 10.5
20902 20903 20904	02-017 10:46:26 02-017 18:03:14 02-018 03:22:22 02-018 03:43:36 02-018 05:29:46	22 22	2	2 4 2 2 2	125 78 224 178 185	9 26 11 8 8	29 4 11 49 14	5 9 6 4 5	12 6 12 13 13	10 15 13 14 14	7 15 10 8 5	0 0 0 0	1 1 0 1 0	26 25 5 26 43	1 0 31 1 1	5 5 5 5 5	0 0 0 0	1 1 1 1 1	1 1 1 1	1 1 1 1 1	6 6 6 6	101.3 101.3 101.4 101.4 101.4	0.0 0.0 0.0 0.0 0.0	7.384 5.741 10.567 10.787 11.885	274 340 135 200 190	42 71 142 72 83	3 50 -34 -49 -53	4.5 19.0 4.5 2.3 2.7	1.9 1.9 1.9	8.1×10^{-11} 3.3×10^{-13} 8.8×10^{-12} 1.3×10^{-09} 4.8×10^{-11}	10.5 10.5 10.5
20997 21041 21046	02-019 03:40:25 02-143 00:49:36 02-270 02:38:21 02-292 00:55:21 02-308 16:48:59	8 22 22 22 22	2	3 2 2 3 3	40 185 15 13 13	9 12 22	15 5 8 29 27	13 10 12 12 25	12 12 13 15 15	0 15 15 9 9	13 11 0 6 8	0 0 1 0	1 0 1 1 1	26 5 14 46 35	1 31 31 1 31	5 5 5 5 5	0 0 0 0	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	6 6 6 6	101.4 110.6 121.4 123.4 125.1	0.0 0.3 0.5 0.5	24.398 343.589 216.955 135.606 14.372	34 190 69 72 72	136 88 182 191 191	43 -53 17 15 15	2.0 4.5 2.3 2.0 6.4	1.9 1.9 1.9	6.6×10^{-10} 2.3×10^{-12} 6.7×10^{-11} 9.2×10^{-09} 1.4×10^{-10}	10.5 10.5 10.5
21078 21079 21080	02-308 16:48:59 02-308 20:00:06 02-308 22:28:43 02-308 22:51:23 02-308 22:51:52	22 22 259 259 259	3 3 2	2 2 2 3 4	107 244 239 98 27		50 14 21 15 30	4 12 14 26 27	14 13 13 15 12	14 14 12 15 12	8 7 9 0 5	0 0 0 1 0	1 1 1 1	26 4 38 40 46	1 12 0 31 1	5 5 5 5 5	0 0 0 0	1 1 1 1 1	1 1 1 1	1 1 1 1 1	6 6 6 6	125.1 125.1 125.2 125.2 125.2	0.6 0.6 0.6 0.6 0.6	14.372 12.002 10.014 9.698 9.691	300 107 114 312 52	86 191 190 91 186	24 -13 -19 33 30	2.0 2.7 2.3 2.0 2.0	1.6 1.9 1.9	4.1×10^{-09} 5.7×10^{-11} 3.7×10^{-10} 1.6×10^{-09} 3.1×10^{-08}	6.0 10.5 10.5
21085 21087 21088	02-308 22:52:53 02-309 02:22:17 02-309 02:44:49 02-309 03:10:28 02-309 03:21:48	259 22 2 2 2	3	4 2 3 2 3	240 235 52 245 234	22 11	30 21 27 13 25	18 8 9	13 13 6	12 12 15 15 15	9 8 15 15 7	0 0 0 0 0	1 1 1 1 1	46 40 23 8 44	1 0 3 5 0	5 5 5 5 5	0 0 0 0	1 1 1 1 1	1 1 1 1 1	1 1 1 1	6 6 6 6	125.2 125.2 125.2 125.2 125.2	0.6 0.6 0.6 0.6 0.6	9.676 6.530 6.164 5.740 5.550	113 120 17 105 121	190 189 160 191 188	-17 -23 51 -12 -24	2.0 2.3 2.5 9.5 2.5	1.9 1.6 5.0	3.1×10^{-08} 3.1×10^{-10} 2.5×10^{-09} 1.2×10^{-12} 1.5×10^{-09}	10.5 6.0 282.4
21091 21093 21095	02-309 04:13:33 02-309 04:30:41 02-309 05:05:18 02-309 05:19:00 02-309 05:29:23	2	1 2 2	3 2 3 3 2	232 66 82 25 26	9 21	9 22 23	22 20	15 14 11	15 4 10 13 15	0 0 0 12 0	1 1 1 0 1	1 0 1 0 0	42 44 46 46 44	9 27 27 4 14	5 5 5 5 5	0 0 0 0	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	6 6 6 6	125.2 125.2 125.2 125.2 125.2	0.6 0.6 0.6 0.6 0.6	4.665 4.366 3.759 3.519 3.339	124 357 335 55 53	187 133 106 187 186	-26 55 48 28 29	2.5 2.0 2.0 2.3 2.1	1.9 1.9 1.9	$\begin{array}{c} 1.8\times10^{-09}\\ 9.0\times10^{-11}\\ 2.4\times10^{-09}\\ 1.9\times10^{-09}\\ 1.3\times10^{-10} \end{array}$	10.5 10.5 10.5
21099 21100 21102	02-309 05:34:43 02-309 05:36:36 02-309 05:37:35 02-309 05:39:32 02-309 05:39:32	2 2 2	3 2 2 1 2	4 2 4 2 3	24 221 234 237 217	24 9 28 9 22	3 21 30 13 10	7 25 20	11 12	12 11 15	10 15 0 15 15	0 0 1 0	1 1 1 0 1	6 17 22 11 17	3 2 11 6 5	5 5 5 5 5	0 0 0 0	1 1 1 1 1	1 1 1 1 1	1 1 1 1	6 6 6 6	125.2 125.2 125.2 125.2 125.2	0.6 0.6 0.6 0.6 0.6	3.247 3.215 3.198 3.165 3.165	56 139 121 117 145	187 181 188 189 177	27 -38 -24 -21 -41	2.0 7.2 3.9 2.1 2.0	1.9	2.8×10^{-10} 5.0×10^{-12} 2.1×10^{-09} 1.3×10^{-10} 6.3×10^{-10}	10.5 6.0 6.0

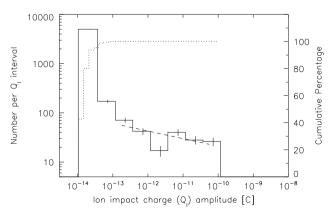
21107 02-309 05:42:19 21108 02-309 05:43:01 21109 02-309 05:43:01 21110 02-309 05:45:57 21112 02-309 05:49:51	2 1 2 2 2 4 2 2 3 2 3 4 2 2 3	30 24 21 24 190 21 13 5 244 30 57 24	13 14 0 1 1 15 13 0 1 1	7 6 5 49 31 5 42 31 5 46 0 5 46 27 5	0 1 1 1 6 125 0 1 1 1 6 125	.2 0.6 3.106 48 184 33 2.0 1.9 3.5×10^{-09} .2 0.6 3.106 183 133 -54 2.0 1.9 8.2×10^{-10} .2 0.6 3.056 107 191 -13 2.0 1.9 2.4×10^{-07}	10.5 10.5 10.5 10.5 10.5
21113 02-309 05:50:50 21114 02-309 05:51:49 21116 02-309 05:53:46 21117 02-309 05:53:46 21118 02-309 05:54:45	2 2 4 2 2 3 2 2 3 2 1 2 2 2 3	45 23 25 18 40 21 24 13 22 8 18 18	15 15 0 1 1 13 12 6 0 1 15 1 0 1 0	26 6 5 46 9 5 17 19 5 41 8 5 23 15 5	0 1 1 1 6 125 0 1 1 1 6 125	.2 0.6 2.958 27 170 47 2.5 1.6 2.2×10^{-09} .2 0.6 2.926 34 176 43 2.5 1.6 1.3×10^{-09} .2 0.6 2.926 59 188 25 2.0 1.9 2.3×10^{-10}	10.5 6.0 6.0 10.5 6.0
21119 02-309 05:56:43 21120 02-309 05:56:43 21121 02-309 05:57:40 21122 02-309 05:59:38 21123 02-309 05:59:38	2 2 3 2 1 2 2 3 4 2 2 3 2 2 2	221 9 7 3 224 26 9 26 148 20 21 8	9 1 10 0 1 14 15 0 1 1	23 2 5 11 31 5 17 1 5 46 31 5 19 3 5	0 1 1 1 6 125 0 1 1 1 6 125	.2 0.6 2.878 139 181 -38 2.0 1.9 6.5×10^{-11} .2 0.6 2.862 135 183 -35 7.2 1.9 1.2×10^{-11} .2 0.6 2.831 242 86 -22 2.0 1.9 1.8×10^{-09}	10.5 10.5 10.5 10.5 10.5
21124 02-309 06:00:36 21127 02-309 06:03:06 21128 02-309 06:05:04 21130 02-309 06:08:01 21131 02-309 06:09:00	2 2 4 2 2 2 2 1 2 2 2 4 2 2 3	196 9 15 6 12 13 11 25 42 24 28 28	15 3 0 1 0 12 14 0 1 1	18 9 5 18 4 5 41 28 5 20 10 5 9 7 5	0 1 1 1 6 125 0 1 1 1 6 125	.2 0.6 2.775 174 145 -54 7.2 1.9 2.6×10^{-12} .2 0.6 2.744 73 191 14 2.0 1.9 2.4×10^{-10} .2 0.6 2.698 31 174 44 2.5 1.6 4.1×10^{-09}	6.0 10.5 10.5 6.0 14.3
21133 02-309 06:09:58 21135 02-309 06:16:48 21137 02-309 06:16:48 21138 02-309 06:17:47 21139 02-309 06:17:47	2 2 4 2 2 3 2 2 2 2 2 4 2 2 3	226 20 22 12 38 8 12 13 43 28 28 25	15 14 0 1 1 12 12 0 1 1	21 12 5 12 7 5 44 20 5 62 15 5 25 20 5	0 1 1 1 6 125 0 1 1 1 6 125	.2 0.6 2.565 132 184 -33 2.5 1.6 7.8×10^{-10} .2 0.6 2.565 37 178 41 2.5 1.6 4.5×10^{-11} .2 0.6 2.551 30 172 45 2.0 1.9 2.0×10^{-08}	10.5 6.0 6.0 10.5 10.5
21140 02-309 06:17:47 21141 02-309 06:18:44 21143 02-309 06:18:44 21144 02-309 06:19:43 21145 02-309 06:20:42	2 2 2 2 2 3 2 2 2 2 2 2 2 1 2	31 22 8 10 230 12 20 3 198 13 21 3	15 12 0 1 1 13 3 9 0 1 14 14 13 0 0 15 14 14 0 0 13 12 15 0 0	46 22 5 5 5 5 37 6 5 4 15 5 20 3 5	0 1 1 1 6 125 0 1 1 1 6 125	.2 0.6 2.537 46 183 34 2.0 1.9 4.5×10^{-10} .2 0.6 2.537 127 186 -28 2.0 1.9 5.7×10^{-10} .2 0.6 2.523 172 149 -53 2.0 1.9 8.1×10^{-10}	10.5 10.5 10.5 10.5 10.3
21146 02-309 06:20:42 21147 02-309 06:20:42 21148 02-309 06:21:40 21149 02-309 06:22:20 21150 02-309 06:22:20	2 2 4 2 3 3 2 2 4 2 3 2 2 2 3	173 21 5 7 51 26 27 15 207 9 20 20	13 15 0 1 1 14 1 10 0 1 14 15 3 1 1 14 15 14 0 1 15 15 0 1 1	26 6 5 13 5 5 52 5 5 8 4 5 46 31 5	0 1 1 1 6 125 0 1 1 1 6 125	.2 0.6 2.508 207 105 -46 2.0 1.9 2.2×10^{-10} .2 0.6 2.495 18 161 51 2.0 1.9 1.3×10^{-08} .2 0.6 2.485 159 165 -49 2.0 1.9 3.5×10^{-10}	10.5 10.5 10.5 10.5 10.5
21151 02-309 06:23:19 21152 02-309 06:24:20 21153 02-309 06:25:19 21154 02-309 06:25:19 21155 02-309 06:26:25	2 2 2 2 2 3 2 2 4 2 1 2 2 2 2	67 23 6 28 245 26 14 5	15 10 14 0 1 15 15 0 1 0	6 5 5 17 5 5 27 1 5 43 31 5 0 31 5	0 1 1 1 6 125 0 1 1 1 6 125	.2 0.6 2.457 356 132 55 2.0 1.9 3.9×10^{-10} .2 0.6 2.444 105 191 -12 2.0 1.9 2.3×10^{-09} .2 0.6 2.444 156 168 -48 2.0 1.9 7.5×10^{-11}	6.0 10.5 10.5 10.5 10.5
21156 02-309 06:27:46 21157 02-309 06:28:25 21158 02-309 06:28:40 21159 02-309 06:29:27 21160 02-309 06:29:27	2 2 4 2 2 2 2 2 4 2 1 2 2 2 3	181 12 7 15 242 25 26 19 237 8 10 18	15 0 0 1 1 11 12 0 1 1 15 14 0 1 0		0 1 1 1 6 125 0 1 1 1 6 125	.2 0.6 2.402 195 117 -51 2.0 1.9 1.1×10^{-10} .2 0.6 2.398 110 191 -15 2.3 1.9 5.1×10^{-09} .2 0.6 2.388 117 189 -21 2.5 1.6 3.3×10^{-11}	10.5 10.5 10.5 6.0 10.5

Table / (сопинией)																														
No.	IMP. DATE	TEV	CLN	AR	SEC	IA	EA	CA	IT	ET	EIT	EIC	ICC	PA	PET	EVD	ICP	ECP	CCP	PCP	HV	LON	LAT	D_{Jup}	ROT	S_{LON}	S_{LAT}	V	VEF	M	MEF
21162 21163 21164	02-309 06:29:41 02-309 06:30:30 02-309 06:30:38 02-309 06:31:12 02-309 06:31:43	2 2 2	2 2 2 1 3	4 2 3 2 4		11 22 9	4	4 18 4	12 12 15	11 12 15	0 10 0 0 10	0 0 1	1 0 0 0 1	24 10 61 7 11	31 28 14 29 1	5 5 5 5 5	0 0 0 0	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	6 6 6 6	125.2 125.2 125.2 125.2 125.2	0.6 0.6 0.6 0.6	2.385 2.374 2.372 2.365 2.358	222 153 136	94 170	-52 -37 -46 -36 -40	2.0 4.5 2.0 2.0 2.0	1.9 1.9 1.9	4.0×10^{-09} 3.9×10^{-12} 3.5×10^{-09} 3.9×10^{-11} 3.0×10^{-09}	10.5 10.5
21167 21169 21171	02-309 06:32:28 02-309 06:32:41 02-309 06:33:45 02-309 06:34:38 02-309 06:34:46	2 2 2	2 2 3 2 2	2 3 4 3 4	212 48	22 30 21		10 27 14	14 14	12 15 13	0 0 12 0 15	1 0 1	1 1 1 1	5 27 25 18 28	31 15 1 18 4	5 5 5 5	0 0 0 0	1 1 1 1	1 1 1 1 1	1 1 1 1 1	6 6 6 6	125.2 125.2 125.2 125.2 125.2	0.6 0.6 0.6 0.6	2.349 2.346 2.333 2.322 2.320	104 152 23	91 192 172 166 189	-34 -11 -45 49 24	2.0 2.0 2.0 2.0 2.0	1.9 1.9 1.9	6.4×10^{-11} 3.5×10^{-09} 6.1×10^{-08} 1.7×10^{-09} 4.2×10^{-09}	10.5 10.5
21175 21176 21178	02-309 07:30:05 02-309 07:30:23 02-309 07:30:23 02-309 07:30:23 02-309 07:30:31	259 259 259 259 259	2 3 3	2 3 2 4 3		20 11 27	15 20 12	19 8 24	14 15 14	0 15 6	15 14 14 13 0	0 0 0 0 1	1 1 1 1	26 25 27 27 10	1 3 5 5 29	5 5 5 5 5	0 0 0 0	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	6 6 6 6	125.2 125.2 125.2 125.2 125.2	0.6 0.6 0.6 0.6 0.6	1.992 1.992 1.992 1.992 1.993	46 30 10	183 172	-41 34 45 54 -42	7.2 2.0 2.0 2.0 2.0	1.9 1.9 1.9	2.5×10^{-11} 9.5×10^{-10} 4.8×10^{-10} 1.9×10^{-09} 9.5×10^{-10}	10.5 10.5 10.5
21181 21183 21202	02-309 07:30:40 02-309 07:30:40 02-310 00:44:19 02-329 06:20:41 03-030 00:00:00	259 259 259 259 259 95000	2 3 3	4 3 2 4 4	212 254 90 235 239	23 8 24	28 50 28	20 14 26	15 14 15	8 14 12	12 7 8 11 5	0 0 0	1 1 1 1	60 46 25 44 46	3 0 1 0 1	5 5 5 5 5	0 0 0 0	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	6 6 6 6	125.2 125.2 125.3 126.7 131.7	0.6 0.6 0.6 0.6		93 323 120	192 97 189	-45 -1 41 -23 -16	2.3 7.3 2.0 2.5 2.5	3.9 1.9 1.6	3.7×10^{-09} 1.1×10^{-10} 3.4×10^{-09} 4.1×10^{-09} 9.7×10^{-09}	10.5 6.0
21210 21211 21212	03-030 00:14:23 03-066 18:14:23 03-066 18:14:23 03-066 18:15:50 03-067 15:07:11	95000 1020 1020 1020 1560	3 2 3	4 4 2 2 2	17 41 234	24 11 13	30 29 23 24 21	13 7 10	15 15 13 13 13	12 15 15	5 6 7 6 11	0 0 0 0	1 1 0 1	35 46 43 44 37	31 1 1 1 0	5 5 5 5 5	0 0 0 0	1 1 1 1	1 1 1 1 1	1 1 1 1	6 6 6 6	131.7 134.6 134.6 134.6 134.6	0.7 0.8 0.8 0.8	357.009 357.010	66 32 121	210 209 195 205 210	9 22 47 -22 17	2.5 2.5 2.3 2.3 2.3	1.6 1.9 1.9	6.2×10^{-09} 4.8×10^{-09} 4.4×10^{-10} 7.3×10^{-10} 2.7×10^{-10}	6.0 10.5 10.5
21215 21216 21218	03-067 15:08:38 03-069 15:00:00 03-069 15:00:00 03-264 02:12:38 03-264 10:49:32	1560 260 260 259 259	2 3 3	2 3 2 2 2	4 16	22 15	22 26 21	22 14	11 13 14	8 15 13	0 6 9	1 0 0	1 1 1 1 0	41 46 3 42 37	1 23 31 0 31	5 5 5 5 5	0 0 0 0	1 1 1 1	1 1 1 1 1	1 1 1 1 1	6 6 6 6	134.6 134.8 134.8 150.4 150.5	0.8 0.8 0.8 1.0 1.0	357.593 358.875 358.875 17.003 10.372	45 84 68	207 202 210 209 210	-15 38 7 21 15	2.0 2.3 2.3 2.0 4.5	1.9 1.9 1.9	1.5×10^{-09} 1.6×10^{-09} 1.4×10^{-09} 4.9×10^{-10} 2.4×10^{-12}	10.5 10.5 10.5
21222 21224 21225	03-264 12:24:22 03-264 14:54:04 03-264 15:01:08 03-264 15:15:18 03-264 15:29:27	8 8	3 2 3 3 3	4 3 4 3 3	137	20 28 21	23 30 26	6 25 25		15 13 8	9 15 7 7 8	0 0 0 0	1 1 1 1	46 20 6 46 43	0 4 1 1 0	5 5 5 5 5	0 0 0 0	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	6 6 6 6	150.5 150.5 150.5 150.5 150.5	1.0 1.0 1.0 1.0 1.0	8.938 6.424 6.295 6.033 5.767	186 257 44	148 101 202	-46 -50 -7 39 -27	4.9 2.5 2.5 7.3 2.5	1.6 1.6 3.9	3.9×10^{-10} 9.3×10^{-10} 9.7×10^{-09} 5.3×10^{-11} 1.3×10^{-09}	6.0 6.0 128.4
21230 21231 21232	03-264 15:43:36 03-264 16:40:13 03-264 17:01:27 03-264 17:15:36 03-264 17:15:36	8 8 8	3 1 2 2 3	2 2 2 4 3	16 254 31 135 191	10 8 29	22 10 13 15 28	3 11 25	13 15 13	15 15 13 0 8	8 15 15 7 13	0 0 0 0	1 0 1 1	41 13 13 17 26	1 6 5 1	5 5 5 5 5	0 0 0 0	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	6 6 6 6	150.5 150.5 150.5 150.5 150.5	1.0 1.0 1.0 1.0	5.495 4.346 3.884 3.565 3.565	93 46 260	209 210 203 101 153	21 0 37 -5 -51	2.3 2.3 3.9 2.0 7.3	1.9 1.6 1.9	3.7×10^{-10} 6.7×10^{-11} 1.1×10^{-11} 4.0×10^{-09} 9.1×10^{-11}	10.5 6.0 10.5

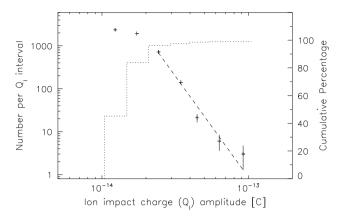
Table 7 (continued)

10.5 10.5 10.5 10.5 6.0	10.5 10.5 10.5 10.5	10.5 14.3 10.5
-10 -10 -07	- 09 - 09 - 07 - 09	-10 -09 -09
3.9 × 10 ⁻¹⁰ 7.0 × 10 ⁻¹⁰ 2.5 × 10 ⁻¹⁰ 2.4 × 10 ⁻⁰⁷ 1.5 × 10 ⁻⁰⁹	2.2×10^{-09} 1.2×10^{-09} 8.0×10^{-10} 2.0×10^{-07} 1.6×10^{-09}	4.9×10^{-10} 4.6×10^{-10} 2.4×10^{-09} 1.9×10^{-11}
3.9 7.0 7.0 2.5 2.4 1.5	2.2 1.2 8.0 8.0 1.6	4.6 4.6 2.4 1.9
1.9 1.9 1.9 1.6	1.9 1.9 1.9 1.9	1.9 2.1 1.9 1.9
2.0 2.0 2.3 2.0 2.0	2.0 2.0 2.0 2.0 2.0	2.0 4.9 2.0 7.2
-44 -44 -32 -50 -19	-38 -14 -8 -50	-16 7 49 -42
185 210 199 161 206	117 208 209 144 202	207 210 191 123
155 98 135 176 117	217 111 104 188 44	1114 84 28 208
3.401 3.235 3.235 3.066 3.066	3.066 2.894 2.894 2.720 2.720	2.518 2.518 2.518 2.518
.,.,.,.,	.,	
1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	1.0
150.5 150.5 150.5 150.5 150.5	150.5 150.5 150.5 150.5 150.5	150.5 150.5 150.5 150.5
9 9 9 9	9 9 9	9 9
0 0 0 0	0000	0 0 0 0
2 2 2 2 2	טטטטט	22 22 22
1 2 2 2 3	1 10	8 14 2
24 46 24 26 26	25 49 18 26 13	37 46 49 27
1 1 1 0 1		
00000	00000	0 0 0 0
14 8 8 2 12	14 6 7 7 13	13 8 10
9 7 114 115	15 6 14 11 12	12 10 14 3
15 13 14 13	21 41 41 41	14 15 13 9
6 5 4 4 26 12	5 12 5 25 8	25 55 18
14 12 14 57 25	26 12 22 22 56 24	22 28 22 11
13 21 14 30 21	24 24 30 41	9 24 21 27
210 250 224 195 237	166 241 246 186 33	239 4 44 172
2 % 2 4 %	04040	0464
0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	m m m m
w w w w		22 22 22 22 22
2:41 3:46 3:46 3:50	3:55 3:55 3:55 3:59 3:59	0.01
03-264 17:22:41 03-264 17:29:46 03-264 17:29:46 03-264 17:36:50	03-264 17:36:50 03-264 17:43:55 03-264 17:43:55 03-264 17:50:59 03-264 17:50:59	03-264 17:59:01 03-264 17:59:01 03-264 17:59:01 03-264 17:59:01
264 264 264 264 264 264	264 264 264 264 264 264	264 264 264 264 1
03-03-03-03-03-03-03-03-03-03-03-03-03-0	03-03-03-03-03-03-03-03-03-03-03-03-03-0	
21234 21235 21236 21238 21238	21240 21241 21242 21243 21244	21246 21248 21249 21250
. 4 . 4 . 4 . 4 . 4		. 4 . 4 . 4 . 4

be larger in the jovian magnetosphere than in interplanetary space the charge measured on the entrance grid of the dust instrument did not give any convincing results yet. Reliable charge measurements for interplanetary dust grains and for dust in Saturn's E ring were recently reported for the Cassini dust detector (Kempf et al., 2004, 2006). These measurements may lead to an improved understanding of the charge measurements of Ulysses and Galileo in the future.


Entries for the parameter PA in Table 7 sometimes have values between 49 and 63 although the highest possible value allowed by the instrument electronics is 48 (Paper I). This is also inherent in all Galileo and Ulysses data sets published earlier (Papers II to IX) and it is due to a bit flip. According to our present understanding the correct PA values are obtained by subtracting 32 from all entries which have values between 49 and 63. Values of 48 and lower should remain unchanged.

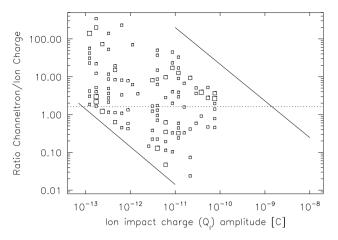
4. Analysis


The positive charge measured on the ion collector, Q_I , is the most important impact parameter determined by the dust instrument because it is rather insensitive to noise. Fig. 5 shows the distribution of Q_I for the full 2000–2003 data set (small and big particles together). Ion impact charges were only detected over four orders of magnitude instead of the entire range of six orders of magnitude the instrument could measure. Note that the saturation limit of the instrument was at about $\sim 10^{-8}$ C but the maximum measured charge was $Q_I = 9.7 \times 10^{-11}$ C, well below the saturation limit. This is most likely due to instrument degradation (Section 2.5 and Krüger et al., 2005).

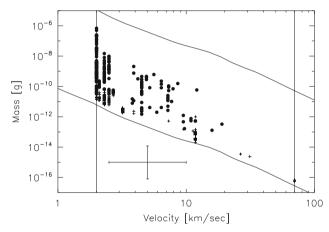
The impact charge distribution of the big particles $(Q_I > 10^{-13} \, \text{C})$ follows a power law with index -0.15 and is shown as a dashed line in Fig. 5. This slope is flatter than the values of approximately -1/3 derived for the jovian system from the 1996–1999 Galileo data set (Papers VI and VIII). Whether this flattening is due to changes in the particle properties or due to electronics degradation remains unclear. Note that the jovian stream particles (AR1) were excluded from the power law fit.

In Fig. 5 the small stream particles ($Q_{\rm I} < 10^{-13}$ C) are squeezed into the two leftmost histogram bins. In order to investigate their behaviour in more detail we show their number per individual digital step separately in Fig. 6. The distribution flattens for impact charges below 2 \times 10⁻¹⁴ C. Such a flattening was also evident in the earlier data sets (Papers II, IV, VI and VIII), indicating the sensitivity threshold of the dust instrument may

Fig. 5. Amplitude distribution of the impact charge Q_1 for the 5389 dust particles detected in 2000–2003. The solid line indicates the number of impacts per charge interval, whereas the dotted line shows the cumulative distribution. Vertical bars indicate the \sqrt{n} statistical fluctuation. A power law fit to the data with $Q_1 > 10^{-13}$ C (big particles, AR2-4) is shown as a dashed line (Number $N \sim Q_1^{-0.15}$).


Fig. 6. Same as Fig. 5 but for the 5165 small particles in the lowest amplitude range (AR1) only. A power law fit to the data with $2 \times 10^{-14} \, \text{C} < Q_I < 10^{-13} \, \text{C}$ is shown as a dashed line (Number $N \sim Q_I^{-4.72}$).

not be sharp. The impact charge distribution for small particles with $Q_1 > 2 \times 10^{-14}\,\mathrm{C}$ follows a power law with index -4.7. It is very close to the slope found from the 1996 Galileo data set (-4.5, Paper VI) and somewhat steeper than the value measured in 1997–1999 (-3.6, Paper VIII). The charge distribution strongly increases towards smaller impact charges. Note that the distribution of the stream particles is much steeper than that of the big particles shown in Fig. 5. Interestingly, if we restrict the time interval to the period between 00-220 and 00-250 when Galileo was outside the jovian magnetosphere in orbit G28 the stream particles show a somewhat steeper slope of -5.9 (not shown here).


The ratio of the channeltron charge Q_C and the ion collector charge Q_I is a measure of the channeltron amplification A which is an important parameter for dust impact identification (Paper I). The in-flight channeltron amplification was monitored in Papers II, IV, VI and VIII for the initial ten years of the Galileo mission to identify possible degrading of the channeltron. In the earlier mission the amplification $A = Q_C/Q_I$ for a channeltron high voltage setting of $1020\,\mathrm{V}$ (HV=2) determined from impacts with $10^{-12}\,\mathrm{C} \le Q_I \le 10^{-10}\,\mathrm{C}$ was in the range $1.4 \le A \le 1.8$. No significant channeltron degradation was evident until the end of 1996. In the 1997–1999 interval (Paper VIII) a value of $A \simeq 0.7$ was found which indicated serious channeltron degradation. As a consequence, the channeltron high voltage was raised two times (on days 99-305 and 99-345) to return to the original amplification factor.

Here we repeat the same analysis for the 2000–2003 interval. Fig. 7 shows the charge ratio Q_C/Q_I as a function of Q_I for a constant high voltage, HV, as in the previous papers. Here we show data for HV=6. The charge ratio Q_C/Q_I determined for $10^{-12} \text{ C} \le Q_1 \le 10^{-10} \text{ C}$ is $A \simeq 1.6$ and is obtained from 65 impacts. The data for HV=4 and 5 (time intervals 00-001 to 00-209 and 00-209 to 01-352) give $A \simeq 1.3$ and 0.5, respectively. These values, however, are derived from only 9 and 15 impacts, respectively, and therefore have a much lower statistical significance. The amplification for HV=6 is close to the value from the interplanetary cruise and the early Jupiter mission, showing that the original channeltron amplification could be roughly reestablished. Details of the dust instrument degradation due to the harsh radiation environment in the jovian magnetosphere are described by Krüger et al. (2005, see also Section 2.5). It should be noted that the ratio Q_C/Q_I is entirely determined by the instrument performance. It does not depend upon the properties of the detected particles.

Fig. 8 displays the calibrated masses and speeds of all 5389 dust grains detected in the 2000–2003 interval. Although the

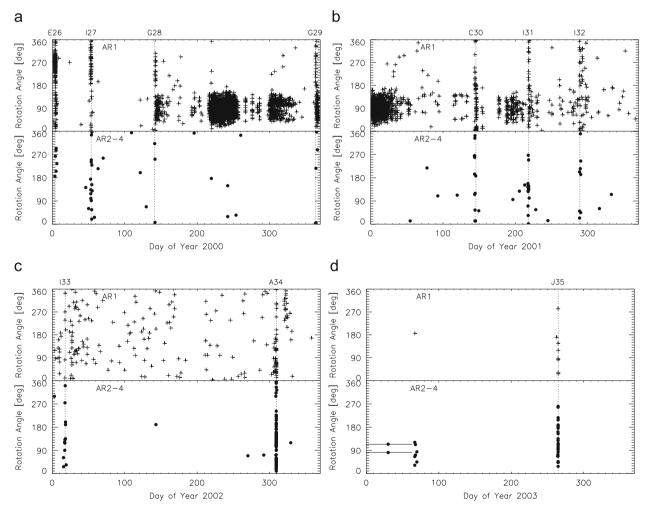
Fig. 7. Channeltron amplification factor $A = Q_C/Q_I$ as a function of impact charge Q_I for big particles (AR2-4) detected in 2000–2003. No impacts were measured in AR5 and AR6. Only impacts measured with a channeltron high voltage setting HV=6 are shown. The solid lines indicate the sensitivity threshold (lower left) and the saturation limit (upper right) of the channeltron. Squares indicate dust particle impacts, and the area of the squares is proportional to the number of events (the scaling of the squares is the same as in Papers VI and VIII). The dotted horizontal line shows the mean value of the channeltron amplification A = 1.62 calculated from 65 impacts in the ion impact charge range $10^{-12} C < Q_I < 10^{-10} C$.

Fig. 8. Masses and impact speeds of all 5389 impacts recorded in 2000–2003. The lower and upper solid lines indicate the threshold and saturation limits of the detector, respectively, and the vertical lines indicate the calibrated velocity range. A sample error bar is shown that indicates a factor of two error for the velocity and a factor of 10 for the mass determination. Note that all particles are most likely much faster and smaller than implied by this diagram (see text for details). Plus signs show particles in AR1 while filled circles refer to particles in AR2-4. No impacts were measured in AR5 or AR6.

range of impact speeds calibrated in the laboratory extends from 2 to $70\,\mathrm{km\,s^{-1}}$, the measured impact speeds range only up to about $20\,\mathrm{km\,s^{-1}}$. This is caused by the degradation of the dust instrument electronics which lead to extended rise time measurements and, hence, impact speeds which are artificially too low, and calibrated grain masses artificially too large. This becomes apparent when comparing Fig. 8 with the corresponding figures in the earlier Papers II, IV, VI and VIII where the measured range of impact speeds extends up to $70\,\mathrm{km\,s^{-1}}$. Therefore, due to the strong electronics degradation, all calibrated impact speeds and masses in the time interval considered in this paper should be considered as lower and upper limits, respectively. Any clustering of the speed values is due to discrete steps in the rise time measurement but this quantization is much smaller than the speed uncertainty. For further details of the mass and speed

calibration the reader is referred to the description of the massspeed diagrams in our earlier papers.

The impact direction of the dust particles detected in the 2000-2003 interval is shown in Figs. 9 and 10. Before 2000 the detection geometry of the small dust stream (AR1) particles was such that the grains could only be detected during a very limited period of time around perijove passage (cf. Paper VIII, Table 4 therein, which lists the times of onset, 180° shift in impact direction and cessation of the dust streams observed by the Galileo dust detector). This changed in 2000 when the streams became detectable from rotation angles 90 + 70° during almost the entire orbit of Galileo. This is best seen in orbits G28 to C30 in 2000 and 2001. Big particles (AR2-4) were, as in the earlier periods, mostly detected in the inner jovian system when Galileo was close to Jupiter with the exception of several impacts recorded in March 2003 at about 350 R_I from Jupiter (Section 5.4). Note that an error occurred in our earlier rotation angle plots in Paper VIII (Fig. 9 in that paper). The corrected figure is shown in the Appendix.


5. Discussion

The dust data set from Galileo's entire Jupiter mission is a unique set of dust measurements from the jovian system for many years to come. Various jovian dust populations were investigated during the last 15 years which we have summarised in Section 1.1. The present paper finalises our series of Galileo dust data papers and we discuss some particular aspects of the 2000–2003 data set.

5.1. Variability of Io's dust emission

Imaging observations of Io with Voyager, Galileo, Cassini and New Horizons detected at least 17 volcanic centres with related plumes (Porco et al., 2003; McEwen et al., 2004; Spencer et al., 2007; Geissler and McMillan, 2008). Most of the plumes were sensed through the scattering of sunlight by dust particles entrained within the plumes, and ring-shaped surface deposits on Io suggest that other plumes have been recently active as well. The dust data from the entire Galileo Jupiter mission are a unique record of the dust ejected from Io. In particular, as the plumes are the most plausible sources of the grains (Graps et al., 2000), the dust measurements monitor plume activity (Krüger et al., 2003a).

The Galileo dust data show a large orbit-to-orbit variation due to both systematic and stochastic changes. Systematic effects include lo's orbital motion, changes in the geometry of Galileo's orbit and in the magnetic field configuration due to the rotation of Jupiter. Stochastic variations include fluctuations of lo's volcanic activity, changes of the particle charging in the lo torus, variations

Fig. 9. Rotation angle vs. time for two different mass ranges. Upper panel: small particles, AR1; lower panel: big particles, AR2-4 (no impacts were detected in AR5 and AR6 in the time interval considered in this paper). See Section 2 for an explanation of the rotation angle. Vertical dotted lines indicate Galileo's satellite encounters (E26-A34) or the spacecraft impact into Jupiter (J35). The uncertainty in the determination of the impact time is usually much smaller than the symbol sizes, except for two impacts in 2003 (panel d) which have a very large uncertainty (indicated by two horizontal bars).

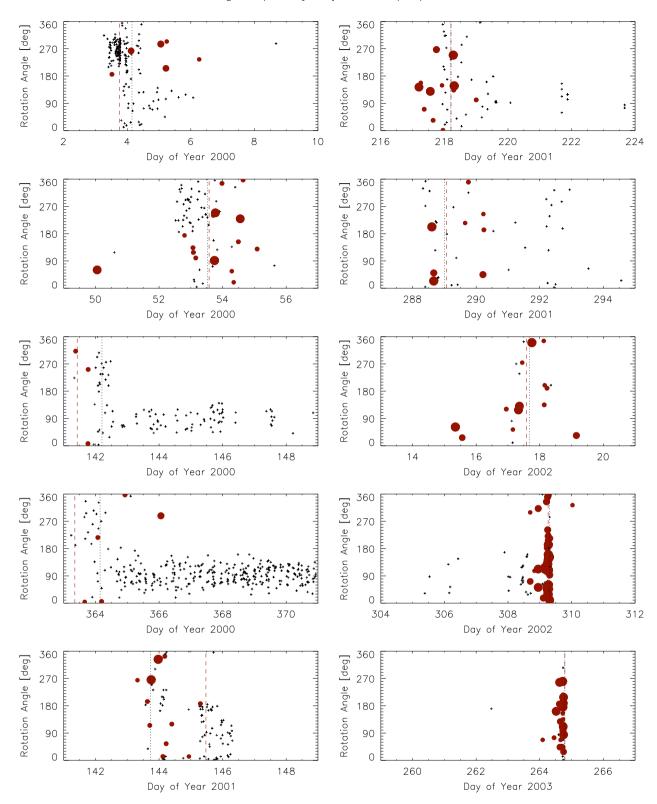


Fig. 10. Rotation angle detected by the dust instrument in the inner jovian system in higher time resolution. Only dust data for classes 2 and 3 are shown. Crosses denote impacts in AR1, filled circles those in AR2-4, with the circle size indicating the amplitude range. Dotted lines indicate perijove passages of Galileo, dashed lines satellite closest approaches (E26-A34) or Jupiter impact (J35).

in grain release from the torus, and the deformation of the outer magnetosphere in response to the variable solar wind conditions. It should be emphasized that the mechanisms acting on the grains in the lo torus and in particular the connected temporal variability are presently not well understood. By combining the entire Galileo dust data set, the variability due to stochastic processes

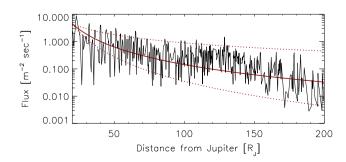
could be averaged out and a strong flux variation with jovian local time showed up (Krüger et al., 2003b), confirming earlier predictions (Horányi et al., 1997).

Dust emission rates of lo were derived by Krüger et al. (2003a). After removal of the systematic variations, the total dust emission rate of lo turned out to be between 10^{-3} and $10\,\mathrm{kg}\,\mathrm{s}^{-1}$, with

typical values in the range 0.1–1 kg s⁻¹. Exceptionally high dust emission rates occurred during orbits E4 (1996), C21 (1999), G28, and, to a lesser extent, also during G29 and C30. Some of these peaks in the dust emission could be related to specific plume sightings or other markers of volcanic activity on Io: the Pele plume is one of the most powerful plumes and the most steady high-temperature volcanic centre on Io. Surface changes at the Pele site were detected frequently, whereas detections of the Pele plume are relatively rare. Two detections of the Pele plume are coincident with our measurements of high dust fluxes in E4 and G29, while a low dust flux in E6 may be explained by the absence of the Pele plume (McEwen et al., 1998; Porco et al., 2003). In August/September 2000 (orbit G28: Section 5.2) when Galileo was far away from Jupiter, a large dust flux was observed which is likely connected with surface changes observed at the site of the Tvashtar plume (Krüger et al., 2003a).

Here we investigate the orbit-to-orbit variability of the dust emission pattern on much shorter timescales of days to weeks. As in earlier works (Krüger et al., 2003a) we assume a particle radius $s=10 \,\mathrm{nm}$, grain density $\rho=1.5 \,\mathrm{g \, cm^{-3}}$, dust grain charging to +5 V in the Io torus, and calculate the effective dust sensor area from the particle dynamics based on the model of Horányi et al. (1997). We divide the measured dust impact rate by the effective sensor area to obtain the dust flux $f(m^{-2}s^{-1})$ as a function of distance d from Jupiter. If we assume that Io's dust emission, the dust charging, ejection conditions from the plasma torus and the grain speed remain constant over the time interval considered, we expect a "dilution" of the dust with d^{-2} . Dynamical modelling implies that—after the grains are released from the Io torus—the major acceleration occurs within approximately 10 R_I from Jupiter so that their speed remains basically unchanged further away from the planet. Finally, the variation of the dust flux with joyian local time is usually below a factor of five (Krüger et al., 2003b) and thus of minor significance compared to the orbit-to-orbit variability considered here. With all these assumptions, we expect a variation of the dust flux with d^{-2} . It should be emphasized that here we use exactly the same assumptions for calculating dust emission rates as Krüger et al. (2003a).

Contrary to our assumption made above that the dust stream particles are dispersed in space into three dimensions, based on the model of Horányi et al. (1993) one might consider that the dust gets dispersed in space into a two-dimensional warped dust sheet. In this case one expects a dilution with d^{-1} instead of d^{-2} . Such a configuration seems unlikely because dynamical modelling has shown that the grains also experience a significant acceleration away from Jupiter's equatorial plane and reach jovian latitudes up to 20° (Horányi et al., 1997) while some grains can be accelerated to even higher latitudes (Graps, 2001). This is supported by the dust streams measurements from Ulysses' second Jupiter flyby in 2004 when the dust streams were detected at high jovian latitudes up to 70° (Krüger et al., 2006c). Furthermore, the picture of the warped dust sheet assumes particles with a constant charge and a single size. Graps (2001) has shown, however, that the grain charge quickly responds to the ambient plasma conditions and that different sized particles have a different phase with respect to Jupiter's magnetic field, leading to a wide distribution of dust in space. Thus, particle emission in a three-dimensional configuration appears to reflect the real situation much better than a two-dimensional structure.


In Table 8 we list the slopes of power law fits $f \propto d^{\alpha}$ to the derived dust flux profiles. We only considered Galileo orbits where sufficiently long data sets for at least two days are available so that meaningful flux profiles could be obtained. Large variations in the flux profiles are obvious from Table 8. Given the overall uncertainties we believe that slopes in the range $-3 \lesssim \alpha \lesssim -1$ are still compatible with a rather constant dust

ejection rate from Io and the Io torus ($\alpha=-2$). Fig. 11 shows the dust flux during the G29 orbit as an example. Here the power law fit to the data gives a slope $\alpha\approx-2$. It implies that the dust release from the Io torus stayed remarkably constant for a rather long period of more than two months. For comparison we also show power law curves with slopes -1 and -3. A flux profile following a power law with slope -1 would imply that within the approximately two-months period when Galileo moved from 20 to 200 $R_{\rm J}$ from Jupiter, the dust ejection had increased by a factor of ten. Similarly, with a slope of -3 the dust ejection would have dropped by the same factor in this time interval.

Large deviations from this simple and ideal case with constant dust ejection are also obvious in the table. For example, orbits E4, E19, I32 and A34 show very flat profiles in the range $-1 \lesssim \alpha \lesssim 0$, implying that during these orbits stronger dust emissions occurred when Galileo was far away from Jupiter than when the spacecraft was closer to the planet. On the other hand, during orbits G2, G8, E14, E16, E18 and E26 Galileo experienced a stronger dust ejection when the spacecraft was in the inner jovian system (power law slopes $-4 \lesssim \alpha \lesssim -7$). Note that the time coverage of these data sets usually ranges from days to a few weeks, indicating that lo's plume activity or the dust charging and

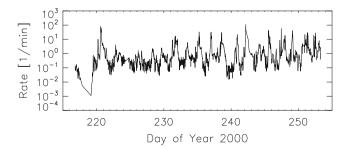
Table 8 Slopes α of power law fits to the measured dust flux profiles and lo's dust production.

Orbit	Distance (R _J)	Time interval	α	Dust production $(kg s^{-1})$
G1	48-15	96-175 to 96-179	-1.9	0.1-2
G2	128-20	96-214 to 96-250	-4.3	0.2-5
C3	113-20	96-284 to 96-310	-1.9	0.2-10
E4	49-20	96-349 to 96-352	-0.7	3-20
E6	38-15	97-048 to 97-051	-1.6	0.01-0.07
G7	59-20	97-087 to 97-093	-3.5	0.1-5
G8	48-20	97-123 to 97-127	-5.4	0.2-3
C9	50-20	97-173 to 97-177	-2.0	0.07-1
C10	55-20	97-256 to 97-260	-1.7	0.1-5
E11	57-20	97-304 to 97-309	-3.7	0.1-1
E12	50-20	97-344 to 97-348	-2.1	0.05-0.7
E14	48-20	98-083 to 98-087	-6.1	0.05-0.3
E16	39-20	98-198 to 98-200	-7.3	0.01-0.5
E17	44-20	98-265 to 98-268	-1.4	0.05-0.5
E18	47-33	98-321 to 98-323	-5.6	0.05-0.5
E19	48-20	99-027 to 99-030	-0.6	0.05-0.5
E26	15-30	00-005 to 00-006	-5.3	0.01-0.05
G28	22-167	00-143 to 00-168	-1.8	0.1-3
G28	270-290	00-227 to 00-252	_	10-1000
G29	290-172	00-253 to 00-335	+10.4	0.1-500
G29	20-216	01-365 to 01-070	-2.1	0.01-1
I32	22-93	01-290 to 01-300	+0.2	0.005-0.5
I33	61-348	02-023 to 02-164	-1.1	0.05-5
A34	348-22	02-164 to 02-308	-0.4	0.05-1

Fig. 11. Dust flux measured during Galileo's G29 orbit. The data were smoothed with a 2-h boxcar average. A power law fit with slope -2.1 is shown as a solid line. Dotted lines show curves with slopes -1 and -3 for comparison.

release from the Io torus, or both frequently changed on such rather short timescales.

Dust production rates of lo calculated with the method described above are also listed in Table 8. It should be emphasized that within less than a week the dust release frequently changed by approximately a factor of 10, and the absolute levels of the dust emission may have been vastly different from one Galileo orbit to the next. For a detailed discussion of the total dust ejection rates from lo and correlations with individual plume sightings the reader is referred to Krüger et al. (2003a) who showed that all intervals with elevated dust emission exceeding $\sim 1\,\mathrm{kg}\,\mathrm{s}^{-1}$ (six intervals in total) can be connected with giant plume eruptions or large area surface changes on lo or both. See also Section 5.2.


5.2. Io's dust emission in August/September 2000

In summer 2000 (orbit G28) Galileo left the jovian magnetosphere for the first time since it was injected into the jovian system in 1995 and reached a jovicentric distance of $\sim 280\,R_J$ (0.13 AU). In August/September 2000, around Galileo's apojove, the dust instrument measured a surprisingly large dust impact rate exceeding $10\,\text{min}^{-1}$ for about two months (Fig. 12). Similarly high fluxes were also recorded with the Cassini dust instrument at $\sim 0.3\,\text{AU}$ from Jupiter when the spacecraft was approaching the planet in September 2000 (Hsu et al., 2009). The dust emission from Io derived from the Galileo measurements by Krüger et al. (2003a) in this time period exceeds $\sim 100\,\text{kg}\,\text{s}^{-1}$. Later, when Galileo approached Jupiter again, the dust flux profile showed a surprisingly steep drop (slope $\alpha \approx 10$), implying a huge decrease in Io's dust emission.

Frequency analysis of the Galileo dust data from the first three years of the Galileo Jupiter mission (1996–1998) revealed strong 5 and 10 h periodicities which were due to Jupiter's rotation (Graps et al., 2000). A weak "Io footprint" with approximately 42 h frequency caused by this moon's orbital motion about Jupiter and harmonics with Jupiter's rotation frequencies were also revealed. These data were collected mostly in the inner jovian magnetosphere between 10 and 60 $R_{\rm J}$. In the data obtained during the later Galileo orbits in 1999 and 2000 the Io footprint became more prominent and was evident during most Galileo orbits from E19 to G29 (Graps, 2001).

In the data from a total of 26 Galileo orbits measured between 1996 and 2000, 11 orbits showed a clear modulation with Io's frequency, three showed a weak Io modulation, while the remaining 12 orbits showed no Io signature at all (Graps, 2001). In many, but not all, cases the missing Io signature coincided with time periods when a rather weak dust flux was measured.

In the data set from August/September 2000, collected between days 00-220 and 00-250 at much larger jovicentric distances, lo's signature dominated all other frequency signatures

Fig. 12. Impact rate of jovian dust stream particles (AC21 and AC31) measured during Galileo's G28 orbit at approximately 280 $R_{\rm J}$ from Jupiter (no smoothing applied).

including the 5 and 10 h periods caused by Jupiter's rotation (Graps et al., 2001). These data provide direct evidence for Io being the source for the majority of the jovian dust stream particles during this time period. The presence of Io's orbital frequency implies that Io is a localised source of charged dust particles because charged dust from diffuse sources would couple to Jupiter's magnetic field and appear in frequency space with Jupiter's rotation frequency and its harmonics.

The period of strong dust emission seen in August/September 2000 coincided with enhanced neutral gas production from the Io torus, suggesting a coupling mechanism between gas and dust ejection, although the relation between the dust emissions and the production of neutral gas is not known (Delamere et al., 2004). Furthermore, there was a significant reduction in the neutral source beginning in October 2000, again coinciding with the strong drop in the dust emission as derived from our Galileo dust data.

5.3. Galileo-Cassini joint dust stream measurements

On 30 December 2000 the Cassini spacecraft flew by Jupiter, providing a unique opportunity for a two-spacecraft time-of-flight measurement (Cassini–Galileo) of particles from one collimated stream from the jovian dust streams. The goal was to detect particles in a stream first with Galileo when the spacecraft was inside the jovian magnetosphere close to the orbit of Europa (about $12\ R_{\rm J}$), and particles in potentially the same stream later by Cassini outside the magnetosphere (at $140\ R_{\rm J}$) (see Graps et al., 2001, for a preliminary analysis).

The Cassini data from the Jupiter flyby imply that particles of different sizes have different phases with respect to Jupiter's rotation (Sascha Kempf, personal communication), a result which is also seen in earlier Galileo data (Grün et al., 1998). Comparison of the measurements from both dust instruments, however, is hampered by the lower detection sensitivity of the Galileo detector with respect to the Cassini sensor. Both instruments have detected stream particles with different sizes and, hence likely different phases. The analysis is ongoing, and more detailed modelling to describe the phase relation of different-sized particles taking into account the three-dimensional structure of the dust emission pattern from the jovian system is necessary. Our present preliminary analysis indicates particle speeds of about 400 km s⁻¹. This value is in agreement with speeds for 10 nm particles as derived from dynamical modelling (Hamilton and Burns, 1993; Horányi et al., 1993), and earlier studies of the jovian dust stream dynamics (Zook et al., 1996).

5.4. Large dust grains far from Jupiter

On 29 December 2002 (day 02-363) the last MRO of the dust instrument memory occurred for the remainder of the Galileo mission. The next time we received dust data was during the time interval 4-11 March 2003 (days 03-063 to 03-070). These data were obtained as RTS data. We identified a total number of nine large dust impacts in amplitude ranges AR2-4 which occurred between 29 December 2002 and 11 March 2003. Due to corruption of the readings from the instrument's internal clock and one clock reset in this time interval, two of these impacts have an exceptionally large uncertainty in the impact time of 66 days. We could reconstruct the impact time of the remaining seven impacts with a higher accuracy from accumulator readings obtained with test pulses which were routinely performed by the dust instrument (see Krüger et al., 2005, for more details). This gave impact times for five impacts with about one day uncertainty and for two impacts with 4.3 h uncertainty (Table 7).

The reconstruction of these partially corrupted data implies that at least seven impacts occurred during a period of only four days when Galileo was outside Jupiter's magnetosphere in interplanetary space at approximately 350 $R_{\rm I}$ from Jupiter. This is a surprisingly large number of impacts at such a large distance from Jupiter given the Galileo measurements from the earlier Jupiter mission (Papers VI and VIII) and from Galileo's interplanetary cruise. Potential sources for these grains are, for example, collisional ejecta from an (unknown) small jovian satellite or a cometary trail crossed by the spacecraft. Judging from the impact charge distribution of the measured grains. jovian stream particles (Fig. 6) can be most likely ruled out because a much larger number of impacts should have occurred in the lower amplitude range AR1. In fact, only few impacts were recognized in AR1 during this time. A more detailed analysis of these impacts has to be postponed to a future investigation.

5.5. Galileo's gossamer ring passages

On 5 November 2002 (orbit A34, day 02-309) Galileo traversed Jupiter's gossamer rings for the first time and approached the planet to 2 R_I. During this ring passage the spacecraft had a close flyby at Amalthea at 244 km distance from the moon's centre, well outside Amaltheas's Hill sphere. During approach to Jupiter dust data were collected with the highest possible rate (record mode; Section 2.3) while Galileo was within Io's orbit (i.e. within \sim 5.9 R_I). Shortly after Amalthea flyby a spacecraft anomaly at $2.33 R_1$ jovicentric distance prevented the collection of further Galileo dust data. Although the dust instrument continued to measure dust impacts after the anomaly, the data were not written to the tape recorder on board and, hence, the majority of them were lost. Only the data sets of a few dust impacts were received from an MRO on day 02-322. These events could be located to have happened during the gossamer ring passage but their impact time is uncertain by a few hours (Table 7). The traverse of the optically visible ring from its outer edge at $\sim 3.75 R_{\rm I}$ until the spacecraft anomaly occurred lasted about 100 min, and the total gossamer ring traverse from $\sim 3.75 R_{\rm I}$ inbound to $\sim 3.75 R_{\rm I}$ outbound took approximately 6 h.

During the A34 ring passage the lowest amplitude range in class 2 (AC21) was strongly contaminated with noise, while the higher amplitude ranges showed little or no noise contamination. In addition, many class 1 events recognized within lo's orbit showed signatures of being true dust impacts as well. The noise identification scheme applied to the dust data from both Galileo gossamer ring passages is described in Section 3.1 and given in Table 5.

With the new noise identification scheme, complete data sets of 90 dust impacts were identified in the Galileo recorded data from the gossamer ring region. Several hundred more events were counted only and their data sets were lost, in particular in AR1. The completeness of the transmitted ring data varied between 100% in the highest amplitude ranges (AR2-4) in the faint ring extension beyond Thebe's orbit down to only 4% for the lowest amplitude range (AR1) in the more populated Amalthea ring.

In record mode, the dust instrument memory was read out once per minute, and this readout frequency determined the spatial resolution of the measurements: within 1 min Galileo moved about 1800 km through the ring which corresponds to about 1100 km (or 0.015 $R_{\rm J}$) in radial direction. This is the highest spatial resolution achievable in the ring with the Galileo in-situ measurements.

Dust measurements in the gossamer rings were also obtained during Galileo's second ring traverse on 21 September 2003 (orbit J35) a few hours before Galileo impacted Jupiter. The data sets of about 20 dust impacts were successfully transmitted to Earth as

RTS data. This time the spatial resolution was only about $14,000 \, \text{km}$ (or $0.2 \, R_{\text{l}}$).

The data from both gossamer ring traverses allowed for the first actual comparison of in-situ measurements with the properties inferred from inverting optical images. A detailed analysis of this data was published by Krüger et al. (2009). Below we summarise the most important results.

Images of the rings imply inclinations of the grain orbits of $i\approx 1^\circ$ for the visible 5–10 μ m grains (Showalter et al., 2008). The expected rotation angle for ring particles on circular prograde uninclined jovicentric orbits was $\simeq 90^\circ$. The rotation angles measured within Io's orbit and in particular during the ring passages were—to a first approximation—consistent with these expectations. However, the width of the rotation angle distribution was much wider than the expected width for the geometry conditions during both gossamer ring passages.

What was the reason for such a broad distribution in impact directions? One possibility was the sensor side wall which was very sensitive to dust impacts (Altobelli et al., 2004; Willis et al., 2005). Taking the sensor side wall into account (Table 3), the expected width in rotation angle was still significantly smaller than the observed width. Another potential explanation was impacts onto nearby spacecraft structures like the magnetometer boom, the EPD and PLS instruments which masquerade as particles with high inclinations. We are convinced that such an explanation can be ruled out for two reasons (Moissl, 2005): First, the impact parameters (charge rise times, charge signal coincidences, etc.) of grains measured with rotation angles outside the nominal field-of-view for low-inclination particles do not show significant differences compared to grains inside the nominal field-of-view. Second, the data from both Galileo ring traverses show similarly broad rotation angle patterns although they had different detection geometries. During the first flyby the magnetometer boom obscured the field-of-view while during the second flyby this was not the case (Krüger et al., 2009).

The most likely explanation for the observed structure in the rotation angle pattern is the particle dynamics: The wide range in impact directions as well as a drop measured in the impact rate profile immediately interior to Thebe's orbit and a gradual increase in the relative abundance of small particles closer to Jupiter can best be explained by a shadow resonance caused by varying particle charge on the day and night side of Jupiter, driving particles onto high inclination orbits (Hamilton and Krüger, 2008). In fact, inclinations up to 20° nicely explain the measured impact directions for most grains.

Comparison of our in-situ measurements with imaging observations showed that the in-situ measurements preferentially probe the large population of small sub-micron particles while the images are sensitive to larger grains with radii of at least several microns. The grains form a halo of material faint enough to be invisible to imaging, but populated enough to be detectable with the Galileo sensor. The faint gossamer ring extension previously imaged to about $3.75\ R_{\rm J}$ was detected out to at least $5\ R_{\rm J}$, indicating that ejecta from Thebe spread much further and particle orbits get higher eccentricities than previously known. Both the gap in the ring and the faint ring extension indicate that the grain dynamics is strongly influenced by electromagnetic forces. For a more detailed discussion of the ring particle dynamics the reader is referred to Hamilton and Krüger (2008).

6. Conclusions

In this paper, which is the tenth in a series of Galileo and Ulysses dust data papers, we present data from the Galileo dust instrument for the period January 2000 to September 2003. In this time interval the spacecraft completed nine revolutions about Jupiter in the jovicentric distance range between 2 and 370 $R_{\rm J}$ (Jupiter radius, $R_{\rm J}$ =71,492 km). On 21 September 2003 Galileo was destroyed in a planned impact with Jupiter.

The data sets of a total of 5389 (or 2% of the total) recorded dust impacts were transmitted to Earth in this period. Many more impacts (98%) were counted with the accumulators of the instrument but their complete information was lost because of the low data transmission capability of the Galileo spacecraft. Together with 15,861 impacts recorded in interplanetary space and in the Jupiter system between Galileo's launch in October 1989 and December 1999 published earlier (Grün et al., 1995a; Krüger et al., 1999a, 2001a, 2006b), the complete data set of dust impacts measured with the dust detector during Galileo's entire mission contains 21,250 impacts.

The Galileo dust detector has been extremely successful, measuring dust streams flowing away from Jupiter, a tenuous dust ring throughout the jovian magnetosphere and Jupiter's gossamer rings over the almost four year timespan of data considered in this paper.

Most of the time the jovian dust streams dominated the overall impact rate, reaching maxima of more than $10\,\mathrm{min}^{-1}$ in the inner jovian system. A surprisingly large impact rate up to $100\,\mathrm{min}^{-1}$ was measured in August/September 2000 (G28 orbit) when the spacecraft was at about 280 R_{I} distance from Jupiter. This strong

dust emission was most likely connected with a heavy volcanic eruption on Io (Krüger et al., 2003a; Geissler, 2003; Geissler et al., 2004). A strong variation in the release of neutral gas from the Io torus in this time interval was also reported by Delamere et al. (2004).

Io's dust emission as derived from the measured dust fluxes varied by many orders of magnitude, with typical values ranging between 0.1 and $1\,\mathrm{kg}\,\mathrm{s}^{-1}$ of dust ejected. In August/September 2000 the derived dust emission exceeded $100\,\mathrm{kg}\,\mathrm{s}^{-1}$. The investigation of the dust impact rate profiles measured for the jovian stream particles as a function of radial distance from Jupiter revealed large orbit-to-orbit variations and variability by a factor of 10 or more on timescales of days to a few weeks. This implies variability of the dust release into circumjovian space from Io or the Io torus or variability of the jovian magnetosphere on such short timescales.

A surprisingly large number of impacts of bigger micron-sized dust grains was detected within a four-day time interval far away from Jupiter in March 2003 when Galileo was in interplanetary space. The source of these grains remains unclear.

Finally, in November 2002 and September 2003 Galileo traversed Jupiter's gossamer rings twice, providing the first actual opportunity to compare in-situ dust measurements with the results obtained from remote imaging. These flybys revealed previously unknown structures in the gossamer rings (Krüger et al., 2009): a drop in the dust density between the moons Amalthea and Thebe, grains orbiting Jupiter on highly inclined

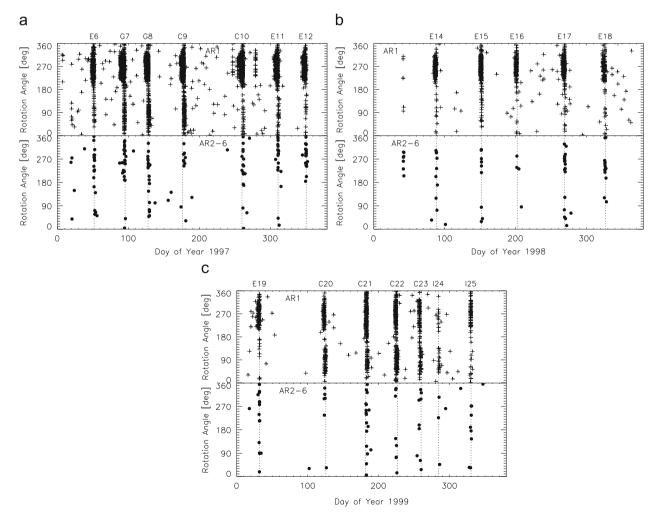


Fig. 13. Correction for Paper VIII: rotation angle vs. time for two different mass ranges for the time interval 1997–1999. Upper panel: small particles, AR1 (Io dust stream particles); lower panel: big particles, AR2-6. Vertical dotted lines indicate Galileo's satellite encounters.

orbits and an increase in the number of small grains in the inner regions of the rings as compared to the regions further away from the planet. All these features can nicely be explained by electromagnetic forces on the grains that shape the gossamer rings (Hamilton and Krüger, 2008).

Strong degradation of the dust instrument electronics was recognised in the Galileo dust data (Krüger et al., 2005). It was most likely caused by the harsh radiation environment in the jovian magnetosphere and lead to a degradation of the instrument sensitivity for noise and dust detection during the Galileo mission. The Galileo data set obtained until the end of 1999 (Papers VI and VIII) was not seriously affected by this degradation. In the time interval 2000–2003 which is the subject of this paper, however. the electronics degradation became so severe that the instrument calibration does not give reliable impact speeds and masses of the dust particles anymore. Instead, only lower limits for the impact speed and upper limits for the grain mass, respectively, can be given. The only exception are dust impacts for which their impact speeds can be derived from other means (e.g. impacts in the gossamer rings; Krüger et al., 2009). On the other hand, a reduction of the channeltron amplification was counterbalanced by four increases of the channeltron high voltage during the entire Jupiter mission (two in 1999, one each in 2000 and 2001) to maintain stable instrument operation.

Even though this is the final paper in our serious of Galileo dust data papers published during the last 15 years, the evaluation of this unique data set is continuing. A list of specific open questions raised in this and earlier data papers includes:

- Electromagnetic interaction and phase relation of different sized stream particles: dust grains with different sizes have a different susceptibility to electromagnetic interaction with the jovian magnetosphere. Different-sized grains released from a source in the inner jovian system at the same time are expected to arrive at Galileo at a different phase of Jupiter's rotation (Grün et al., 1998). This rather simple picture is further complicated by the grains' charging history. Studies of the phase relation may lead to better constraints of the grain size distribution and may give new insights into the grains' electromagnetic interaction. The phase relation may turn out to be essential to understand the Galileo–Cassini joint dust streams measurements.
- Galileo-Cassini joint dust streams measurements: being originally
 designed as a two-spacecraft time-of-flight measurement of one
 collimated stream from the jovian dust streams, the analysis of
 this data set turned out to be more complicated than
 anticipated. More detailed modelling of the three-dimensional
 structure of the dust stream emission pattern from the jovian
 system is necessary to describe the phase relation of differentsized particles and to understand these unique measurements.
- "Big" micron-sized particles: impacts of micron-sized dust grains were preferentially detected in the inner jovian system between the Galilean moons. Two sub-populations—one orbiting Jupiter on prograde and one on retrograde orbits—were identified in earlier analyses (Thiessenhusen et al., 2000). The derived ratio in number density was approximately 4:1 with the majority of grains being on prograde orbits. At the time, however, only about half of the entire Galileo dust data set from Jupiter was available. Given that the detection geometry of the dust instrument changed with time during the mission, re-evaluation of the full data set from the entire Galileo Jupiter mission would be worthwhile to verify the abundance of grains on retrograde orbits.
- Dust-plasma interaction: very preliminary comparison of the Galileo dust measurements from the gossamer ring passages with energetic particle data from the same period has revealed

some interesting correlations between both data sets (Norbert Krupp, personal communication). New insights into the dust-plasma interaction and particle dynamics can be expected from combined studies of the dust data and other Galileo particles and fields data.

Acknowledgements

We dedicate this work to the memory of Dietmar Linkert who passed away in spring 2009. He was Principal Engineer for space instruments at MPI für Kernphysik including the dust instruments flown on the HEOS-2, Helios, Galileo, Ulysses and Cassini missions. His friends and colleagues around the world appreciated his experience and sought his professional advice. The authors wish to thank the Galileo project at NASA/JPL for effective and successful mission operations. This research was supported by the German Bundesministerium für Bildung und Forschung through Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR, grant 50 QJ 9503 3). Support by MPI für Kernphysik and MPI für Sonnensystemforschung is also gratefully acknowledged. The authors also wish to thank two anonymous referees for their valuable comments for the manuscript.

ERRATUM: Due to an error in Paper VIII, all panels of Fig. 9 in that paper have wrong labels on the vertical axis. Furthermore, the third panel (data of 1999) erroneously shows the dataset of 1997. We apologize for this error and show the corrected plots in Fig. 13.

References

Altobelli, N., Moissl, R., Krüger, H., Landgraf, M., Grün, E., 2004. Influence of wall impacts on the Ulysses dust detector in modelling the interstellar dust flux. Planetary and Space Science 52, 1287–1295.

Anderson, J.D., Johnson, T.V., Schubert, G., Asmar, S., Jacobson, R.A., Johnston, D., Lau, E.L., Lewis, G., Moore, W.B., Taylor, A., Thomas, P.C., Weinwurm, G., 2005. Amalthea's density is less than that of water. Science 308, 1291–1293.

Colwell, J.E., Horányi, M., Grün, E., 1998. Capture of interplanetary and interstellar dust by the Jovian magnetosphere. Science 280, 88–91.

D'Amario, L.A., Bright, L.E., Wolf, A.A., 1992. Galileo trajectory design. Space Science Reviews 60, 23–78.

Delamere, P.A., Steffl, A., Bagenal, F., 2004. Modeling temporal variability of plasma conditions in the Io torus during the Cassini era. Journal of Geophysical Research (Space Physics) 109, 10216–10224.

Flandes, A., 2005. Dust dynamics in the jovian system. Ph.D. Thesis, Universidad Nacional Autonoma de Mexico.

Flandes, A., Krüger, H., 2007. Solar wind modulation of Jupiter dust stream detection. In: Krüger, H., Graps, A.L. (Eds.), Dust in Planetary Systems, ESA Publications Division, ESTEC Noordwijk, The Netherlands, pp. 87–90, ESA SP-643.

Geissler, P.E., 2003. Volcanic activity on lo during the Galileo Era. Annual Reviews of Earth and Planetary Sciences 31, 175–211.

Geissler, P.E., McEwen, A., Phillips, C., Kesthelyi, L., Spencer, J., 2004. Surface changes on Io during the Galileo mission. Icarus 169, 29–64.

Geissler, P.E., McMillan, M.T., 2008. Galileo observations of volcanic plumes on Io. Icarus 197, 505–518.

Graps, A.L., 2001. Io revealed in the Jovian dust streams. Ph.D. Thesis, Ruprecht-Karls-Universität Heidelberg.

Graps, A.L., 2006. Characterization of Jovian plasma-embedded dust particles. Planetary and Space Science 54, 911–918.

Graps, A.L., Grün, E., Krüger, H., Horányi, M., Svedhem, H., 2001. Io revealed in the jovian dust streams. In: Proceedings of the Meteoroids 2001 Conference, pp. 601–608, ESA SP-495.

Graps, A.L., Grun, E., Svedhem, H., Kruger, H., Horányi, M., Heck, A., Lammers, S., 2000. Io as a source of the Jovian dust streams. Nature 405, 48–50.

Grün, E., Baguhl, M., Divine, N., Fechtig, H., Hamilton, D.P., Hanner, M.S., Kissel, J., Lindblad, B.A., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Polanskey, C., Riemann, R., Schwehm, G.H., Siddique, N., Staubach, P., Zook, H.A., 1995a. Three years of Galileo dust data. Planetary and Space Science 43, 953–969, Paper II.

Grün, E., Baguhl, M., Divine, N., Fechtig, H., Hamilton, D.P., Hanner, M.S., Kissel, J., Lindblad, B.A., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Polanskey, C., Riemann, R., Schwehm, G.H., Siddique, N., Staubach, P., Zook, H.A., 1995b. Two years of Ulysses dust data. Planetary and Space Science 43, 971–999, Paper III.

Grün, E., Baguhl, M., Hamilton, D.P., Kissel, J., Linkert, D., Linkert, G., Riemann, R., 1995c. Reduction of Galileo and Ulysses dust data. Planetary and Space Science 43, 941–951, Paper I.

- Grün, E., Baguhl, M., Hamilton, D.P., Riemann, R., Zook, H.A., Dermott, S.F., Fechtig, H., Gustafson, B.A., Hanner, M.S., Horányi, M., Khurana, K.K., Kissel, J., Kivelson, M., Lindblad, B.A., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Polanskey, C., Schwehm, G.H., Srama, R., 1996a. Constraints from Galileo observations on the origin of Jovian dust streams. Nature 381, 395–398.
- Grün, E., Fechtig, H., Hanner, M.S., Kissel, J., Lindblad, B.A., Linkert, D., Maas, D., Morfill, G.E., Zook, H.A., 1992a. The Galileo dust detector. Space Science Reviews 60, 317–340.
- Grün, E., Fechtig, H., Kissel, J., Linkert, D., Maas, D., McDonnell, J.A.M., Morfill, G.E., Schwehm, G.H., Zook, H.A., Giese, R.H., 1992b. The Ulysses dust experiment. Astronomy and Astrophysics, (Suppl 92), 411–423.
- Grün, E., Hamilton, D.P., Riemann, R., Dermott, S.F., Fechtig, H., Gustafson, B.A., Hanner, M.S., Heck, A., Horányi, M., Kissel, J., Kivelson, M., Krüger, H., Lindblad, B.A., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Polanskey, C., Schwehm, G.H., Srama, R., Zook, H.A., 1996b. Dust measurements during Galileo's approach to Jupiter and Io encounter. Science 274, 399–401.
- Grün, E., Krüger, H., Graps, A., Hamilton, D.P., Heck, A., Linkert, G., Zook, H., Dermott, S.F., Fechtig, H., Gustafson, B., Hanner, M., Horányi, M., Kissel, J., Lindblad, B., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Polanskey, C., Schwehm, G.H., Srama, R., 1998. Galileo observes electromagnetically coupled dust in the Jovian magnetosphere. Journal of Geophysical Research 103, 20011–20022
- Grün, E., Krüger, P., Dermott, S.F., Fechtig, H., Graps, A.L., Gustafson, B.A., Hamilton, D.P., Heck, A., Horányi, M., Kissel, J., Lindblad, B.A., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Polanskey, C., Schwehm, G.H., Srama, R., Zook, H.A., 1997a. Dust measurements in the Jovian magnetosphere. Geophysical Research Letters 24, 2171–2174.
- Grün, E., Staubach, P., Baguhl, M., Hamilton, D.P., Zook, H.A., Dermott, S.F., Gustafson, B.A., Fechtig, H., Kissel, J., Linkert, D., Linkert, G., Srama, R., Hanner, M.S., Polanskey, C., Horányi, M., Lindblad, B.A., Mann, I., McDonnell, J.A.M., Morfill, G.E., Schwehm, G.H., 1997b. South-north and radial traverses through the interplanetary dust cloud. Icarus 129, 270–288.
- Grün, E., Zook, H.A., Baguhl, M., Balogh, A., Bame, S.J., Fechtig, H., Forsyth, R., Hanner, M.S., Horányi, M., Kissel, J., Lindblad, B.A., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Phillips, J.L., Polanskey, C., Schwehm, G.H., Siddique, N., Staubach, P., Svestka, J., Taylor, A., 1993. Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature 362, 428–430.
- Hamilton, D.P., Burns, J.A., 1993. Ejection of dust from Jupiter's gossamer ring. Nature 364, 695–699.
- Hamilton, D.P., Krüger, H., 2008. Jupiter's shadow sculpts its gossamer rings. Nature 453, 72–75.
- Heck, A., 1998. Modellierung und Analyse der von der Raumsonde Galileo im Jupitersystem vorgefundenen Mikrometeoroiden-Populationen. Ph.D. Thesis, Ruprecht-Karls-Universität Heidelberg.
- Horányi, M., Grün, E., Heck, A., 1997. Modeling the Galileo dust measurements at Jupiter. Geophysical Research Letters 24, 2175–2178.
- Horányi, M., Morfill, G.E., Grün, E., 1993. Mechanism for the acceleration and ejection of dust grains from Jupiter's magnetosphere. Nature 363, 144–146.
- Hsu, H.W., Kempf, S., Postberg, F., Srama, R., Jackman, C.M., Moragas-Klostermeyer, G., Helfert, S., Grün, E., 2009. Interaction of the solar wind and stream particles, results from the cassini dust detector. In: AIP Conference Proceedings; Solar Wind, vol. 12, in press.
- Johnson, T.V., Yeates, C., Young, R., 1992. Galileo mission overview. Space Science Reviews 60, 3–21.
- Kempf, S., Beckmann, U., Srama, R., Horanyi, M., Auer, S., Grün, E., 2006. The electrostatic potential of E ring particles. Planetary and Space Science 54, 999–1006.
- Kempf, S., Srama, R., Altobelli, N., Auer, S., Tschernjawski, V., Bradley, J., Burton, M.E., Helfert, S., Johnson, T.V., Krüger, H., Moragas-Klostermeyer, G., Grün, E., 2004. Cassini between earth and asteroid belt: first in-situ charge measurements of interplanetary grains. Icarus 171, 317–335.
- Krivov, A.V., Krüger, H., Grün, E., Thiessenhusen, K.-U., Hamilton, D.P., 2002a. A tenuous dust ring of Jupiter formed by escaping ejecta from the Galilean satellites. Journal of Geophysical Research 107, E1, doi:10.1029/2000JE001434.
- Krivov, A.V., Sremčević, M., Spahn, F., Dikarev, V.V., Kholshevnikov, K.V., 2003. Impact-generated dust clouds around planetary satellites: spherically-symmetric case. Planetary and Space Science 51, 251–269.
- Krivov, A.V., Wardinski, I., Spahn, F., Krüger, H., Grün, E., 2002b. Dust on the outskirts of the Jovian system. Icarus 157, 436-455.
- Krüger, H., Hamilton, D.P., Moissl, R., Grün, E., 2009. Galileo in-situ dust measurements in Jupiter's gossamer rings. Icarus 203, 198–213.
- Krüger, H., 2003. Jupiter's Dust Disc, An Astrophysical Laboratory. Shaker Verlag Aachen, Habilitation Thesis Ruprecht-Karls-Universität Heidelberg, ISBN 3-
- Krüger, H., Altobelli, N., Anweiler, B., Dermott, S.F., Dikarev, V., Graps, A.L., Grün, E., Gustafson, B.A., Hamilton, D.P., Hanner, M.S., Horányi, M., Kissel, J., Landgraf, M., Lindblad, B., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Polanskey, C., Schwehm, G.H., Srama, R., Zook, H.A., 2006a. Five years of Ulysses dust data: 2000 to 2004. Planetary and Space Science 54, 932–956, Paper IX.
- Krüger, H., Bindschadler, D., Dermott, S.F., Graps, A.L., Grün, E., Gustafson, B.A., Hamilton, D.P., Hanner, M.S., Horányi, M., Kissel, J., Lindblad, B., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Moissl, R., Morfill, G.E., Polanskey, C., Schwehm, G.H., Srama, R., Zook, H.A., 2006b. Galileo dust data from the jovian system: 1997 to 1999. Planetary and Space Science 54, 879–910, Paper VIII.

- Krüger, H., Dikarev, V., Anweiler, B., Dermott, S.F., Graps, A.L., Grün, E., Gustafson, B.A., Hamilton, D.P., Hanner, M.M.S., Horányi, M., Kissel, J., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Polanskey, C., Schwehm, G.H., Srama, R., 2010. Three years of Ulysses dust data: 2005 to 2007. Planetary and Space Science, Paper XI, this issue, doi:10.1016/j.pss.2009.11.002.
- Krüger, H., Geissler, P., Horányi, M., Graps, A.L., Kempf, S., Srama, R., Moragas-Klostermeyer, G., Moissl, R., Johnson, T.V., Grün, E., 2003a. Jovian dust streams: a monitor of lo's volcanic plume activity. Geophysical Research Letters 30, 2101–2105.
- Krüger, H., Graps, A.L., Hamilton, D.P., Flandes, A., Forsyth, R.J., Horányi, M., Grün, E., 2006c. Ulysses jovian latitude scan of high-velocity dust streams originating from the jovian system. Planetary and Space Science 54, 919–931.
- Krüger, H., Grün, E., Graps, A.L., Bindschadler, D.L., Dermott, S.F., Fechtig, H., Gustafson, B.A., Hamilton, D.P., Hanner, M.S., Horányi, M., Kissel, J., Lindblad, B., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Polanskey, C., Schwehm, G.H., Srama, R., Zook, H.A., 2001a. One year of Galileo dust data from the jovian system: 1996. Planetary and Space Science 49, 1285–1301 Paper VI.
- Krüger, H., Grün, E., Hamilton, D.P., Baguhl, M., Dermott, S.F., Fechtig, H., Gustafson, B.A., Hanner, M.S., Horányi, M., Kissel, J., Lindblad, B.A., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Polanskey, C., Riemann, R., Schwehm, G.H., Srama, R., Zook, H.A., 1999a. Three years of Galileo dust data: II. 1993 to 1995. Planetary and Space Science 47, 85–106, Paper IV.
- Krüger, H., Grün, E., Heck, A., Lammers, S., 1999b. Analysis of the sensor characteristics of the Galileo dust detector with collimated Jovian dust stream particles. Planetary and Space Science 47, 1015–1028.
- Krüger, H., Grün, E., Landgraf, M., Baguhl, M., Dermott, S.F., Fechtig, H., Gustafson, B.A., Hamilton, D.P., Hanner, M.S., Horányi, M., Kissel, J., Lindblad, B., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Polanskey, C., Schwehm, G.H., Srama, R., Zook, H.A., 1999c. Three years of Ulysses dust data: 1993 to 1995. Planetary and Space Science 47, 363–383, Paper V.
- Krüger, H., Grün, E., Landgraf, M., Dermott, S.F., Fechtig, H., Gustafson, B.A., Hamilton, D.P., Hanner, M.S., Horányi, M., Kissel, J., Lindblad, B., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Polanskey, C., Schwehm, G.H., Srama, R., Zook, H.A., 2001b. Four years of Ulysses dust data: 1996 to 1999. Planetary and Space Science 49, 1303–1324, Paper VII.
- Krüger, H., Grün, E., Linkert, D., Linkert, G., Moissl, R., 2005. Galileo long-term dust monitoring in the jovian magnetosphere. Planetary and Space Science 53, 1109–1120.
- Krüger, H., Horányi, M., Grün, E., 2003b. Jovian dust streams: probes of the loplasma torus. Geophysical Research Letters 30, 1058–1061.
- Krüger, H., Horányi, M., Krivov, A.V., Graps, A.L., 2004. Jovian dust: streams clouds and rings. In: Bagenal, F., Dowling, T.E., McKinnon, W.B. (Eds.), Jupiter. The Planet, Satellites and Magnetosphere, Cambridge Planetary Science, vol. 1. Cambridge University Press, Cambridge, UK, ISBN: 0-521-81808-7, pp. 219–240.
- Krüger, H., Krivov, A.V., Grün, E., 2000. A dust cloud of Ganymede maintained by hypervelocity impacts of interplanetary micrometeoroids. Planetary and Space Science 48. 1457–1471.
- Krüger, H., Krivov, A.V., Hamilton, D.P., Grün, E., 1999d. Detection of an impactgenerated dust cloud around Ganymede. Nature 399, 558–560.
- Krüger, H., Krivov, A.V., Sremčević, M., Grün, E., 2003c. Galileo measurements of impact-generated dust clouds surrounding the Galilean satellites. Icarus 164, 170–187.
- McEwen, A., Keszthelyi, L., Lopes, R., Schenk, P., Spencer, J., 2004. The lithosphere and surface of Io. In: Bagenal, F., McKinnon, B., Dowling, T. (Eds.), Jupiter: Planet, Satellites & Magnetosphere, Cambridge University Press, pp. 307–328. McEwen, A.S., Keszthelyi, L., Geissler, P., Simonelli, D.P., Carr, M.H., Johnson, T.V.,
- Klaasen, K.P., Breneman, H.H., Jones, T.J., Kaufman, J.M., Magee, K.P., Senske, D.A., Belton, M.J.S., Schubert, G., 1998. Active volcanism on Io as seen by Galileo SSI. Icarus 135, 181–219.
- Moissl, R., 2005. Galileos Staubmessungen in Jupiters Gossamer-Ringen. Ruprecht-Karls-Universität Heidelberg. Diploma Thesis.
- Porco, C.C., West, R.A., McEwen, A., DelGenio, A.D., Ingersoll, A.P., Thomas, P., Squyres, S., Dones, L., Murray, C.D., Johnson, T.V., Burns, J.A., Brahic, A., Neukum, G., Veverka, J., Barbara, J.M., Denk, T., Evans, M., Ferrier, J.J., Geissler, P., Helfenstein, P., Roatsch, T., Throop, H., Tiscareno, M., Vasavada, A.R., 2003. Cassini imaging of Jupiter's atmosphere, satellites, and rings. Science 299, 1541–1547
- Postberg, F., Kempf, S., Green, S.F., Hillier, J.K., McBride, N., Grün, E., 2006. Composition of jovian dust stream particles. Icarus 183, 122–134.
- Showalter, M.R., de Pater, I., Verbanac, G., Hamilton, D.P., Burns, J.A., 2008. Properties and dynamics of Jupiter's gossamer rings from galileo, voyager, hubble and keck Images. Icarus 195, 361–377.
- Spencer, J.R., Stern, S.A., Cheng, A.F., Weaver, H.A., Reuter, D.C., Retherford, K., Lunsford, A., Moore, J.M., Abramov, O., Lopes, R.M.C., Perry, J.E., Kamp, L., Showalter, M., Jessup, K.L., Marchis, F., Schenk, P.M., Dumas, C., 2007. Io volcanism seen by new horizons: a major eruption of the tvashtar volcano. Science 318, 240–243.
- Sremčević, M., Krivov, A.V., Krüger, H., Spahn, F., 2005. Impact-generated dust clouds around planetary satellites: model versus Galileo data. Planetary and Space Science 53, 625–641.
- Sremčević, M., Krivov, A.V., Spahn, F., 2003. Impact-generated dust clouds around planetary satellites: asymmetry effects. Planetary and Space Science 51, 455–471.
- Svestka, J., Auer, S., Baguhl, M., Grün, E., 1996. Measurements of dust electric charges by the Ulysses and Galileo dust detectors. In: Gustafson, B.A., Hanner, M.S. (Eds.), Physics, Chemistry and Dynamics of Interplanetary Dust, ASP

- Conference Series, vol. 104, Astronomical Society of the Pacific Conference Series, 1996, pp. 481-484.
- Thiessenhusen, K.-U., Krüger, H., Spahn, F., Grün, E., 2000. Dust grains around Jupiter—the observations of the Galileo Dust Detector. Icarus 144, 89–98.
- Willis, M.J., Burchell, M., Ahrens, T.J., Krüger, H., Grün, E., 2005. Decreased values of cosmic dust number density estimates in the solar system. Icarus 176, 440–452.
- Willis, M.J., Burchell, M., Cole, M., McDonnell, J.A.M., 2004. Influence of impact ionization detection methods on determination of dust particle flux in space. Planetary and Space Science 52, 711–725.
- Zook, H.A., Ğrün, E., Baguhl, M., Hamilton, D.P., Linkert, G., Linkert, D., Liou, J.-C., Forsyth, R., Phillips, J.L., 1996. Solar wind magnetic field bending of Jovian dust trajectories. Science 274, 1501–1503.