Page 1

1

Adaptive Optics Overview

Adapted from presentations by Prof. Claire Max, UC Santa Cruz **Director, Center for Adaptive Optics**

With additional material from the MPE Garching AO group, ESO AO group, UCLA AO group, and GBT surface adjustment program

0 0.2

2) Intensity

Imaging through a perfect telescope

Point Spread Function (PSF): intensity profile from point source

With no turbulence, FWHM is diffraction limit of telescope, $\vartheta \sim \lambda / D$

CIAO

Example:

 λ / D = 0.02 arc sec for λ = 1 μ m, D = 10 m

With turbulence, image size gets much larger (typically 0.5 - 2 arc sec)

Page 3

<section-header><section-header>

Telescope Fuzzy Blob spreads out light; makes it a blob rather than a point

Even the largest ground-based astronomical telescopes have no better resolution than an 8" telescope!

2.4 meter telescope

10 meter telescope

(Two different dates and times)

4

VLT NAOS AO first light

Cluster NGC 3603: IR AO on 8m ground-based telescope achieves same resolution as HST at 1/3 the wavelength

Hubble Space Telescope WFPC2, $\lambda = 800 \text{ nm}$

NAOS AO on VLT λ = 2.3 microns

Page 9

Adaptive optics makes it possible to find faint companions around bright stars

Two images from Palomar of a brown dwarf companion to GL 105

Credit: David Golimowski

Speckles and the "Seeing disk"

With AO

Images from the MPE Garching AO group http://www.mpe.mpg.de/ir/ALFA

Page 12

6

Optical consequences of turbulence

- Temperature fluctuations in small patches of air cause changes in index of refraction (like many little lenses)
- Light rays are refracted many times (by small amounts)
- When they reach telescope they are no longer parallel

Cartoon (M. Sarazin): wind is from left, strongest turbulence on right side of dome

Computational fluid dynamics simulation (D. de Young) reproduces features of cartoon

Page 16

8

How does adaptive optics help? (cartoon approximation)

____ D >> r_o _____

 In practice, a small deformable mirror with a thin bendable face sheet is used

Placed <u>after</u> the main telescope mirror

11/2/2016

CIAO

11/2/2016

Page 27

Shack-Hartmann wavefront sensor measures local "tilt" of wavefront

- Divide pupil into subapertures of size ~ r_0 - Number of subapertures α (D / r_0)²
- Lenslet in each subaperture focuses incoming light to a spot on the wavefront sensor's CCD detector
- Deviation of spot position from a perfectly square grid measures shape of incoming wavefront
- Wavefront reconstructor computer uses positions of spots to calculate voltages to send to deformable mirror

- Propagation of a flat but tilted wavefront and the resulting curvature signal.
- Grey is a curvature signal of zero, white is positive and black is negative.
- The dashed line shows the outline of the pupil.

6

7/2/01

- When AO system performs well, more energy in core
- When AO system is stressed (poor seeing), halo contains larger fraction of energy (diameter $\sim r_0$)

Х

• Ratio between core and halo varies during night

Active optics: reflector surface errors

- Many telescopes have segmented surfaces: Keck, NGST, and radio telescopes are familiar examples
- Now deform the aperture to correct the phase errors •

/home/gbtdata/AGBT10A_064_05 s2-1-db-000 z6 aperture-notilt.fits

Zernike polynomials The Zernike polynomials are orthogonal on a unit disk First, piston (up-down) Then tilts (R-L, up-down) Then bends with one half cycle across aperture Then more and more cycles Orthogonality simplifies computations; Zernike for circular apertures

Image from Rocchini, Wikipedia commons

 Z_5^{+}

