

Fig. 8.41. Isophotes [contour lines of the intensity $I(u, v)$] in a meridional plane near focus of a converging spherical wave diffracted at a circular aperture. The intensity is normalized to unity at focus. The dotted lines represent the boundary of the geometrical shadow. When the figure is rotated about the u-axis, the minima on the v-axis generate the Airy dark rings.
(Adapted from E. H. Linfoot and E. Wolf, Proc. Phys. Soc., B, 69 (1956), 823.)

(within a factor of two, usually much better)

(within a factor of two, usually much better)

$$
I(\theta) \propto\left(2 \frac{J_{1}(k a \sin (\theta))}{k a \sin (\theta)}\right)^{2}
$$

$$
I(\theta) \propto\left(2 \frac{J_{1}(k a \sin (\theta))}{k a \sin (\theta)}\right)^{2}
$$

3.83170597021...

$$
\pi
$$

(within a factor of two, usually much better)

$$
\theta=(1.219669127 \ldots) \frac{\lambda}{D} \approx 1.22 \frac{\lambda}{D} \quad \begin{aligned}
& \text { For the special case of a uniformly } \\
& \text { illuminated unblocked circular aperture } \\
& \text { according to the Rayleigh criterion }
\end{aligned}
$$

Discovery Channel Telescope

(within a factor of two, usually much better)
$\theta=(1.219669127 \ldots) \frac{\lambda}{D} \approx 1.22 \frac{\lambda}{D} \quad \begin{aligned} & \text { For the special case of a uniformly } \\ & \text { illuminated unblocked circular aperture }, \\ & \text { according to the Rayleigh criterion }\end{aligned}$

