
First Light GREAT and CASIMIR software implementation
S. Stanko, J. Stutzki, January 2003, v0.2

1. Introduction
This document describes the implementation concepts for the GREAT/SOFIA AOS-
data-acquisition software, which is most likely also going to be used for
CASIMIR/SOFIA with its WASP and DCS backends. It presents the present status of
the GREAT planning and development, closely linked to the KOSMA related
software efforts. It also starts with discussing and comparing, to the level that we are
able to figure out at present, the possibilities to link to the corresponding WASP
efforts.

The observing software for GREAT (working name: “KOSMA_control”) will run
on Linux-based PCs, which will communicate with the hardware either directly via
IO-Ports or via serial connection.

The software will be build up in a modular way with many independent tasks which
will communicate and synchronize each other via the KOSMA_file_io system. This
is a package for distributing information by writing and reading ASCII files. Also a
synchronization facility is included.

2. Software and hardware

2.1. Structure of the program package
To ensure maximum flexibility and modularity the software is split into several tasks.
Only the lowest layer of the software (aos_server) has to communicate with the
backend hardware and therefor has to run on the PC which is connected to the
backend. All other software layers communicate with this and the other layers using
KOSMA_file_io over the network and may run on different PCs.

As shown in figure 1, aos_server is the only software task which communicates with
the AOS hardware. Thus, changing to another backend hardware would mean to
replace this small program by another task which is capable to address that particular
hardware. In addition, other spectrometers, such as WASP, may require specific
calibration task, that are presently not covered in this write-up.

In the layer above the aos_server there is the beam switch server (bs_server), the on-
the-fly server (otf_server), the total power server (tp_server), and the servers to
calibrate the spectrometer (in our example for the frequency calibration it produces
combs, so there is a comb_server, and for the intensity calibration it has to measure a
load, which is done by the load_server). All communication in this layer is done via
KOSMA_file_io.

1

2.2. Observing modes
The aos_server implements the following observing modes:

� total power scans
� signal-reference-switched scans
� on-the-fly scans

All other modes may be implemented as higher level observing programs by using
these low level scan programs.1

2.3. Other tasks the second layer software performs
The second layer of the software does some additional tasks besides triggering the
aos_server. Tasks which do measurements on the sky (totpower, otfscan,
beamswitch) check the state of the receiver and the sky/load mirrors. After
performing the scan they check the tracking of the telescope.

Calibration tasks (comb, load) switch on and off the comb for calibrating the AOSes
and the zero for AOS dark count measurements. In addition they control the load
mirrors for temperature calibration.

1 For further details on observing modes see J. Stutzki: “First Light CASIMIR/GREAT observing
modes and software implementation”.

2

Figure 1: Schematic drawing of the kosma_control software. In this example an AOS is physically
connected to the PC and the aos_server task communicates with it.

In case the telescope system does not support one or more of these features, dummies
can be started to simulate these or to prompt information to the user.

2.4. First generation user interface
The first generation user interface will supply information to the software by editing
KOSMA_file_io variables. Some of these low level interfaces have yet been designed
and can easily be connected to a graphical user interface (GUI).

To set the position and line name of the source the setline and setsource programs are
included. To avoid synchronization problems, two different variable spaces are
allocated, so the user may change variables for the next measurement which does not
affect the measurement which is still running. The program track switches between
these sets of variables and tracks the telescope. Then the user may start a total power
scan with totpower_on and totpower_off and a on-the-fly scan with otfscan. Other
programs to perform a load or comb measurement are also included.

2.5. Data format and online display
The raw data are written as FITS files by the aos_server. Thus, it is a good idea (but
not necessary) to mount the data disk physically to the computer with the
measurement hardware.

There is a quasi online display for the measured data as the data are converted and
calibrated by a stand-alone program to class files, which then can be shown on all
devices which are supported by the GILDAS software.

All actual system parameters are reachable in the KOSMA_file_io structure, which
can be read out by all programs which can handle ASCII files.

2.6. Requirements
Because the software is designed with this high grade of modularity it runs on all
Linux based PCs without any special requirements. Only the PC running the
aos_server (or the server for another backend device) has to have the desired
hardware (except for running in test mode). Even other operating systems should
work, as far as they have a GNU gcc (or comparable) compiler and can mount NFS
file systems as KOSMA_file_io depends on that.

2.7. Offline testing and debugging
Because all of the hardware communication is included into the aos_server, offline
testing can be performed by changing the read out functions in this program. All other
parts of the telescope system can be simulated by dummies, which communicate via
KOSMA_file_io.

To implement debugging only the lowest layer of the software system has to be
exchanged. Even to build a task which generates dummy data upon given system
parameters (such as system temperature or atmospheric transmission) is possible.

2.8. Differences between KOSMA_control and WASP2
Kosma_control is highly modularized by using the possibilities of a modern operating

3

system such as Linux and its networking possibilities. That leads to many simple and
small programs which can be debugged individually on any independent computer of
your choice, and not only the observing hardware computer. All programs
communicate via the NFS file system. If in later extensions a faster communication is
needed, there is a very fast self configurable file distribution system available,
compatible with KOSMA_file_io, which guarantees information exchange within
10ms.

Kosma_control will feature a complete test mode even with generation of faked data
to verify calibration.

Kosma_control is prepared to perform on-the-fly scans.

To our limited understanding, WASP2 is a relatively monolithic program, which
cannot be extended by exchanging small, modular tasks. In addition, the hardware
interface is not that simply structured, so that it seems to be a relatively large task to
implement another backend hardware into the system.

WASP2 is designed for one rest frequency only. With kosma_control each AOS
channel is connected to a parameter defined local oscillator, which defines the
measurement frequency.

3. KOSMA_file_io
The KOSMA file I/O library is intended to help exchange information between
programs running on one or several computers. In the style of a database system,
every variable is associated with its name and some more information about it.
Exchange of information between programs is done by writing variables to files and
reading them from files. A variable is found within a file exclusively through its
name. It does not matter where the variable is located within the file. Thus, it is
simple to, for example, edit or restructure the file without affecting the the way how
information is exchanged. In addition, information exchange can be monitored by
tracing the file contents.

In addition the ASCII database holds information about the time the variables where
written the last time. So a reading process can determine whether to read the set of
variables or not. That feature can be used to synchronize tasks.

If future developments show that the NFS based file communication is too slow, we
already have a test version of a faster file exchange system running, that is fully
upward compatible with KOSMA-file-io.

4. Conclusion
From our limited present understanding, which may be biased by not having been
able to get the full information on WASP, we arrive at the following judgement,
which should be discussed thoroughly between the groups involved (preferentially at
a small workshop/meeting). To arrive at a definite conclusion about the
GREAT/CASIMIR software implementation is crucial in order to have a well tested
system up and operational for first light on SOFIA.

Kosma_control is not yet ready, but seems to be more flexible. Integration of WASP

4

hardware into kosma_control seems to be easier than integration of AOS-lib into
WASP2, because in kosma_control there is only one central program to be changed.

5

