
1. The Coupled Escape Probability Method in Spherical Symmetry

1.1. Absorption Probability Along a Specific Line-of-Sight

We consider a line with a Doppler profile, so that the (normalized) line profile function

for absorption is

φ(x) =
1√
π

e−x2

where x =
ν − ν0

∆νD

(1)

where ∆νD is the Doppler width of the line. Then, with the assumption of complete redistri-

bution, the distribution in frequency of the radiation emitted – by scattering or by thermal

processes – is given by the same profile φ(x). The optical depth at frequency x is given by

τφ(x), where τ is called the mean optical depth in the line. (Note that the line center optical

depth τ(x = 0) is τ/
√

π.) Thus the probability that radiation will be emitted at frequency x

and travel optical depth τ without absorption is just φ(x) e−τφ(x). So we define the function

η(τ) =

∫

∞

−∞

φ(x) e−τφ(x) dx (2)

Then, along a particular line-of-sight, the fraction of radiation intercepted between opti-

cal depth τ1 and optical depth τ2 will be η(τ1)− η(τ2). This η(τ) is in some sense analogous

to the α(τ) of Elitzur and Ramos (2005) (ER05). Note that η(τ) is a smooth function which

can be tabulated and easily interpolated for any τ . For small values of τ , a power-series

expansion is useful.(1)

1.2. The Line Coupling Matrix for Spherical Shells

Consider a series of spheres of radius Ri for i = 1, 2, ..., (N + 1), which bound N nested

spherical shells. Consider a point at radius Ri < ri < Ri+1 in the ith shell. Let a ray

from this point ri which makes an angle θ with the radial direction (and define µ = cos θ)

ultimately cross the boundaries of shell j at points τ(µ,Rj) and τ(µ,Rj+1). (For some µ

the line may miss shells j < i. For other µs the line may cut the same shell twice. A

line may also cut Rj+1 twice, but not Rj.). The τ ’s must be calculated by summing up

the segments κk ∆r(µ,Rk, Rk+1) through all the intervening shells. Here, ∆r(µ,Rk, Rk+1)

represents the distance through shell k from ri along the direction µ. Then the quantity

mij(µ) = η[τ(µ,Rj)]− η[τ(µ,Rj+1)] is the chance that radiation traveling in direction µ will

be intercepted in shell j. If we then integrate over all angles, we obtain

mij(ri) =
1

2

∫ 1

−1

[η(τ(µ,Rj)) − η(τ(µ,Rj+1))] dµ , (3)

the probability that radiation leaving point ri in shell i will be intercepted by shell j. The
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value of mij will vary with the position of ri within the shell. Thus we must also integrate

ri over the volume of the shell, dVi = 4πr2
i dri, for Ri < ri < Ri+1, to obtain

Mij =
3

R3
i+1 − R3

i

∫ Ri+1

Ri

mij(ri) r2
i dri (4)

and we call the array of Mij the coupling matrix. Note that the value Mii is the probability

that the radiation is re-absorbed in the same shell from which it was emitted. We have

written J code to compute this matrix given a set of shell radii R1, ..., RN+1 and shell opacities

κ1, ...κN .

1.3. The Line Source Function for the Two-Level Atom

Consider the line radiation emitted from a spherical shell j with volume Vj. This will be

just 4πJ j Vj, where J is the emission coefficient. Now the source function is just S =J /κ,

so the radiation emitted from the shell is 4πκj Sj Vj. Now the ji element of our coupling

matrix Mji is the probability that radiation emitted by shell j will be intercepted by shell i,

so the radiation emitted by j and scattered in i is 4πκj Sj Vj Mji.

On the other hand, in terms of the mean intensity J̄i, the radiation scattered in shell i

must be 4πJ̄i κi Vi. If we denote by J̄ij the the mean intensity in shell i which originates

in shell j, then we can write the radiation emitted in j and scattered in i as 4πJ̄ij κi Vi.

Equating this to the expression in the previous paragraph and summing over all emitting

shells j we have

κi J̄i Vi =
N

∑

j=1

κj Vj Mji Sj (5)

which leads to our expression for the mean intensity in shell i:

J̄i =
N

∑

j=1

(

κj

κi

)(

Vj

Vi

)

Mji Sj (6)

Now the line source function for the two-level atom is given by

Si = (1 − ǫi) J̄i + ǫi Bi (7)

so the equation for the source function Si becomes

Si − (1 − ǫi)
N

∑

j=1

(

κj

κi

) (

Vj

Vi

)

Mij Sj = ǫiBi (8)
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or, with I representing the identity matrix, we have the matrix equation

[

Iij − (1 − ǫi)

(

κj

κi

)(

Vj

Vi

)

Mij

]

× [Si] = [ǫiBi] (9)

1.4. Multi-Level Atoms: The Net Radiative Bracket

The CEP treatment developed by ER05 makes use of the “net radiative bracket” of

Athay and Skumanich (ER05, eq. 6):

p(τ) = 1 −
¯J(τ)

S(τ)
(10)

From our expression for the mean intensity given above, we thus have

pi = 1 −
N

∑

j=1

(

κj

κi

) (

Vj

Vi

)

Mji
Sj

Si

(11)

This can be inserted into the code we developed for the plane-parallel problems to provide

solutions to the corresponding problems in spherical symmetry.

(1) If τ is small, a useful expression for η(τ) can be obtained by expanding the exponential

in equation (2):

η(τ) =

∫

∞

−∞

φ(x)

{

1 − τ φ(x) +
τ 2

2
φ2(x) − · · ·

}

dx =
∞

∑

n=0

(−τ)n

n!

∫

∞

−∞

φn+1(x) dx

and since

φk = π−k/2 e−kx2

and

∫

∞

−∞

e−kx2

dx =

√

π

k

we have

η(τ) =
∞

∑

n=0

(−1)n

πn/2 n!
√

n + 1
τn

Explicitly, the first few terms are

η(τ) ≃ 1 − 0.39894228 τ + 0.09188815 τ 2 − 0.01496559 τ 3 + 0.00188801 τ 4 − · · ·
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