1. The Coupled Escape Probability Method in Spherical Symmetry

1.1. Absorption Probability Along a Specific Line-of-Sight

We consider a line with a Doppler profile, so that the (normalized) line profile function for absorption is

$$
\begin{equation*}
\phi(x)=\frac{1}{\sqrt{\pi}} e^{-x^{2}} \quad \text { where } \quad x=\frac{\nu-\nu_{0}}{\Delta \nu_{D}} \tag{1}
\end{equation*}
$$

where $\Delta \nu_{D}$ is the Doppler width of the line. Then, with the assumption of complete redistribution, the distribution in frequency of the radiation emitted - by scattering or by thermal processes - is given by the same profile $\phi(x)$. The optical depth at frequency x is given by $\tau \phi(x)$, where τ is called the mean optical depth in the line. (Note that the line center optical depth $\tau(x=0)$ is $\tau / \sqrt{\pi}$.) Thus the probability that radiation will be emitted at frequency x and travel optical depth τ without absorption is just $\phi(x) e^{-\tau \phi(x)}$. So we define the function

$$
\begin{equation*}
\eta(\tau)=\int_{-\infty}^{\infty} \phi(x) e^{-\tau \phi(x)} d x \tag{2}
\end{equation*}
$$

Then, along a particular line-of-sight, the fraction of radiation intercepted between optical depth τ_{1} and optical depth τ_{2} will be $\eta\left(\tau_{1}\right)-\eta\left(\tau_{2}\right)$. This $\eta(\tau)$ is in some sense analogous to the $\alpha(\tau)$ of Elitzur and Ramos (2005) (ER05). Note that $\eta(\tau)$ is a smooth function which can be tabulated and easily interpolated for any τ. For small values of τ, a power-series expansion is useful. ${ }^{(1)}$

1.2. The Line Coupling Matrix for Spherical Shells

Consider a series of spheres of radius R_{i} for $i=1,2, \ldots,(N+1)$, which bound N nested spherical shells. Consider a point at radius $R_{i}<r_{i}<R_{i+1}$ in the $i^{\text {th }}$ shell. Let a ray from this point r_{i} which makes an angle θ with the radial direction (and define $\mu=\cos \theta$) ultimately cross the boundaries of shell j at points $\tau\left(\mu, R_{j}\right)$ and $\tau\left(\mu, R_{j+1}\right)$. (For some μ the line may miss shells $j<i$. For other μ s the line may cut the same shell twice. A line may also cut R_{j+1} twice, but not R_{j}.). The τ 's must be calculated by summing up the segments $\kappa_{k} \Delta r\left(\mu, R_{k}, R_{k+1}\right)$ through all the intervening shells. Here, $\Delta r\left(\mu, R_{k}, R_{k+1}\right)$ represents the distance through shell k from r_{i} along the direction μ. Then the quantity $m_{i j}(\mu)=\eta\left[\tau\left(\mu, R_{j}\right)\right]-\eta\left[\tau\left(\mu, R_{j+1}\right)\right]$ is the chance that radiation traveling in direction μ will be intercepted in shell j. If we then integrate over all angles, we obtain

$$
\begin{equation*}
m_{i j}\left(r_{i}\right)=\frac{1}{2} \int_{-1}^{1}\left[\eta\left(\tau\left(\mu, R_{j}\right)\right)-\eta\left(\tau\left(\mu, R_{j+1}\right)\right)\right] d \mu \tag{3}
\end{equation*}
$$

the probability that radiation leaving point r_{i} in shell i will be intercepted by shell j. The
value of $m_{i j}$ will vary with the position of r_{i} within the shell. Thus we must also integrate r_{i} over the volume of the shell, $d V_{i}=4 \pi r_{i}^{2} d r_{i}$, for $R_{i}<r_{i}<R_{i+1}$, to obtain

$$
\begin{equation*}
M_{i j}=\frac{3}{R_{i+1}^{3}-R_{i}^{3}} \int_{R_{i}}^{R_{i+1}} m_{i j}\left(r_{i}\right) r_{i}^{2} d r_{i} \tag{4}
\end{equation*}
$$

and we call the array of $M_{i j}$ the coupling matrix. Note that the value $M_{i i}$ is the probability that the radiation is re-absorbed in the same shell from which it was emitted. We have written J code to compute this matrix given a set of shell radii R_{1}, \ldots, R_{N+1} and shell opacities $\kappa_{1}, \ldots \kappa_{N}$.

1.3. The Line Source Function for the Two-Level Atom

Consider the line radiation emitted from a spherical shell j with volume V_{j}. This will be just $4 \pi \mathcal{J}_{j} V_{j}$, where \mathcal{J} is the emission coefficient. Now the source function is just $S=\mathcal{J} / \kappa$, so the radiation emitted from the shell is $4 \pi \kappa_{j} S_{j} V_{j}$. Now the $j i$ element of our coupling matrix $M_{j i}$ is the probability that radiation emitted by shell j will be intercepted by shell i, so the radiation emitted by j and scattered in i is $4 \pi \kappa_{j} S_{j} V_{j} M_{j i}$.

On the other hand, in terms of the mean intensity \bar{J}_{i}, the radiation scattered in shell i must be $4 \pi \bar{J}_{i} \kappa_{i} V_{i}$. If we denote by $\bar{J}_{i j}$ the the mean intensity in shell i which originates in shell j, then we can write the radiation emitted in j and scattered in i as $4 \pi \bar{J}_{i j} \kappa_{i} V_{i}$. Equating this to the expression in the previous paragraph and summing over all emitting shells j we have

$$
\begin{equation*}
\kappa_{i} \bar{J}_{i} V_{i}=\sum_{j=1}^{N} \kappa_{j} V_{j} M_{j i} S_{j} \tag{5}
\end{equation*}
$$

which leads to our expression for the mean intensity in shell i :

$$
\begin{equation*}
\bar{J}_{i}=\sum_{j=1}^{N}\left(\frac{\kappa_{j}}{\kappa_{i}}\right)\left(\frac{V_{j}}{V_{i}}\right) M_{j i} S_{j} \tag{6}
\end{equation*}
$$

Now the line source function for the two-level atom is given by

$$
\begin{equation*}
S_{i}=\left(1-\epsilon_{i}\right) \bar{J}_{i}+\epsilon_{i} B_{i} \tag{7}
\end{equation*}
$$

so the equation for the source function S_{i} becomes

$$
\begin{equation*}
S_{i}-\left(1-\epsilon_{i}\right) \sum_{j=1}^{N}\left(\frac{\kappa_{j}}{\kappa_{i}}\right)\left(\frac{V_{j}}{V_{i}}\right) M_{i j} S_{j}=\epsilon_{i} B_{i} \tag{8}
\end{equation*}
$$

or, with I representing the identity matrix, we have the matrix equation

$$
\begin{equation*}
\left[I_{i j}-\left(1-\epsilon_{i}\right)\left(\frac{\kappa_{j}}{\kappa_{i}}\right)\left(\frac{V_{j}}{V_{i}}\right) M_{i j}\right] \times\left[S_{i}\right]=\left[\epsilon_{i} B_{i}\right] \tag{9}
\end{equation*}
$$

1.4. Multi-Level Atoms: The Net Radiative Bracket

The CEP treatment developed by ER05 makes use of the "net radiative bracket" of Athay and Skumanich (ER05, eq. 6):

$$
\begin{equation*}
p(\tau)=1-\frac{J \overline{(\tau)}}{S(\tau)} \tag{10}
\end{equation*}
$$

From our expression for the mean intensity given above, we thus have

$$
\begin{equation*}
p_{i}=1-\sum_{j=1}^{N}\left(\frac{\kappa_{j}}{\kappa_{i}}\right)\left(\frac{V_{j}}{V_{i}}\right) M_{j i} \frac{S_{j}}{S_{i}} \tag{11}
\end{equation*}
$$

This can be inserted into the code we developed for the plane-parallel problems to provide solutions to the corresponding problems in spherical symmetry.
${ }^{(1)}$ If τ is small, a useful expression for $\eta(\tau)$ can be obtained by expanding the exponential in equation (2):

$$
\eta(\tau)=\int_{-\infty}^{\infty} \phi(x)\left\{1-\tau \phi(x)+\frac{\tau^{2}}{2} \phi^{2}(x)-\cdots\right\} d x=\sum_{n=0}^{\infty} \frac{(-\tau)^{n}}{n!} \int_{-\infty}^{\infty} \phi^{n+1}(x) d x
$$

and since

$$
\phi^{k}=\pi^{-k / 2} e^{-k x^{2}} \quad \text { and } \quad \int_{-\infty}^{\infty} e^{-k x^{2}} d x=\sqrt{\frac{\pi}{k}}
$$

we have

$$
\eta(\tau)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\pi^{n / 2} n!\sqrt{n+1}} \tau^{n}
$$

Explicitly, the first few terms are

$$
\eta(\tau) \simeq 1-0.39894228 \tau+0.09188815 \tau^{2}-0.01496559 \tau^{3}+0.00188801 \tau^{4}-\cdots
$$

