1. The Coupled Escape Probability Method in Spherical Symmetry

1.1. Absorption Probability Along a Specific Line-of-Sight

We consider a line with a Doppler profile, so that the (normalized) line profile function for absorption is

$$\phi(x) = \frac{1}{\sqrt{\pi}} e^{-x^2} \quad \text{where} \quad x = \frac{\nu - \nu_0}{\Delta \nu_D} \tag{1}$$

where $\Delta \nu_D$ is the Doppler width of the line. Then, with the assumption of complete redistribution, the distribution in frequency of the radiation emitted – by scattering or by thermal processes – is given by the same profile $\phi(x)$. The optical depth at frequency x is given by $\tau \phi(x)$, where τ is called the mean optical depth in the line. (Note that the line center optical depth $\tau(x=0)$ is $\tau/\sqrt{\pi}$.) Thus the probability that radiation will be emitted at frequency x and travel optical depth τ without absorption is just $\phi(x) e^{-\tau \phi(x)}$. So we define the function

$$\eta(\tau) = \int_{-\infty}^{\infty} \phi(x) \ e^{-\tau\phi(x)} \ dx \tag{2}$$

Then, along a particular line-of-sight, the fraction of radiation intercepted between optical depth τ_1 and optical depth τ_2 will be $\eta(\tau_1) - \eta(\tau_2)$. This $\eta(\tau)$ is in some sense analogous to the $\alpha(\tau)$ of Elitzur and Ramos (2005) (ER05). Note that $\eta(\tau)$ is a smooth function which can be tabulated and easily interpolated for any τ . For small values of τ , a power-series expansion is useful.⁽¹⁾

1.2. The Line Coupling Matrix for Spherical Shells

Consider a series of spheres of radius R_i for i = 1, 2, ..., (N + 1), which bound N nested spherical shells. Consider a point at radius $R_i < r_i < R_{i+1}$ in the i^{th} shell. Let a ray from this point r_i which makes an angle θ with the radial direction (and define $\mu = \cos \theta$) ultimately cross the boundaries of shell j at points $\tau(\mu, R_j)$ and $\tau(\mu, R_{j+1})$. (For some μ the line may miss shells j < i. For other μ s the line may cut the same shell twice. A line may also cut R_{j+1} twice, but not R_j .). The τ 's must be calculated by summing up the segments $\kappa_k \Delta r(\mu, R_k, R_{k+1})$ through all the intervening shells. Here, $\Delta r(\mu, R_k, R_{k+1})$ represents the distance through shell k from r_i along the direction μ . Then the quantity $m_{ij}(\mu) = \eta[\tau(\mu, R_j)] - \eta[\tau(\mu, R_{j+1})]$ is the chance that radiation traveling in direction μ will be intercepted in shell j. If we then integrate over all angles, we obtain

$$m_{ij}(r_i) = \frac{1}{2} \int_{-1}^{1} \left[\eta(\tau(\mu, R_j)) - \eta(\tau(\mu, R_{j+1})) \right] d\mu \quad , \tag{3}$$

the probability that radiation leaving point r_i in shell i will be intercepted by shell j. The

value of m_{ij} will vary with the position of r_i within the shell. Thus we must also integrate r_i over the volume of the shell, $dV_i = 4\pi r_i^2 dr_i$, for $R_i < r_i < R_{i+1}$, to obtain

$$M_{ij} = \frac{3}{R_{i+1}^3 - R_i^3} \int_{R_i}^{R_{i+1}} m_{ij}(r_i) r_i^2 dr_i$$
(4)

and we call the array of M_{ij} the coupling matrix. Note that the value M_{ii} is the probability that the radiation is re-absorbed in the same shell from which it was emitted. We have written J code to compute this matrix given a set of shell radii $R_1, ..., R_{N+1}$ and shell opacities $\kappa_1, ..., \kappa_N$.

1.3. The Line Source Function for the Two-Level Atom

Consider the line radiation emitted from a spherical shell j with volume V_j . This will be just $4\pi \mathcal{J}_j V_j$, where \mathcal{J} is the emission coefficient. Now the source function is just $S = \mathcal{J}/\kappa$, so the radiation emitted from the shell is $4\pi\kappa_j S_j V_j$. Now the ji element of our coupling matrix M_{ji} is the probability that radiation emitted by shell j will be intercepted by shell i, so the radiation emitted by j and scattered in i is $4\pi\kappa_j S_j V_j M_{ji}$.

On the other hand, in terms of the mean intensity \bar{J}_i , the radiation scattered in shell *i* must be $4\pi \bar{J}_i \kappa_i V_i$. If we denote by \bar{J}_{ij} the the mean intensity in shell *i* which originates in shell *j*, then we can write the radiation emitted in *j* and scattered in *i* as $4\pi \bar{J}_{ij} \kappa_i V_i$. Equating this to the expression in the previous paragraph and summing over all emitting shells *j* we have

$$\kappa_i \ \bar{J}_i \ V_i = \sum_{j=1}^N \kappa_j \ V_j \ M_{ji} \ S_j \tag{5}$$

which leads to our expression for the mean intensity in shell i:

$$\bar{J}_i = \sum_{j=1}^N \left(\frac{\kappa_j}{\kappa_i}\right) \left(\frac{V_j}{V_i}\right) M_{ji} S_j \tag{6}$$

Now the line source function for the two-level atom is given by

$$S_i = (1 - \epsilon_i) \, \bar{J}_i + \epsilon_i \, B_i \tag{7}$$

so the equation for the source function S_i becomes

$$S_i - (1 - \epsilon_i) \sum_{j=1}^N \left(\frac{\kappa_j}{\kappa_i}\right) \left(\frac{V_j}{V_i}\right) M_{ij} S_j = \epsilon_i B_i$$
(8)

or, with I representing the identity matrix, we have the matrix equation

$$\left[I_{ij} - (1 - \epsilon_i) \left(\frac{\kappa_j}{\kappa_i}\right) \left(\frac{V_j}{V_i}\right) M_{ij}\right] \times [S_i] = [\epsilon_i B_i]$$
(9)

1.4. Multi-Level Atoms: The Net Radiative Bracket

The CEP treatment developed by ER05 makes use of the "net radiative bracket" of Athay and Skumanich (ER05, eq. 6):

$$p(\tau) = 1 - \frac{J(\tau)}{S(\tau)} \tag{10}$$

From our expression for the mean intensity given above, we thus have

$$p_i = 1 - \sum_{j=1}^{N} \left(\frac{\kappa_j}{\kappa_i}\right) \left(\frac{V_j}{V_i}\right) M_{ji} \frac{S_j}{S_i}$$
(11)

This can be inserted into the code we developed for the plane-parallel problems to provide solutions to the corresponding problems in spherical symmetry.

⁽¹⁾ If τ is small, a useful expression for $\eta(\tau)$ can be obtained by expanding the exponential in equation (2):

$$\eta(\tau) = \int_{-\infty}^{\infty} \phi(x) \left\{ 1 - \tau \ \phi(x) + \frac{\tau^2}{2} \ \phi^2(x) - \cdots \right\} dx = \sum_{n=0}^{\infty} \frac{(-\tau)^n}{n!} \int_{-\infty}^{\infty} \phi^{n+1}(x) \ dx$$

and since

$$\phi^k = \pi^{-k/2} e^{-kx^2}$$
 and $\int_{-\infty}^{\infty} e^{-kx^2} dx = \sqrt{\frac{\pi}{k}}$

we have

$$\eta(\tau) = \sum_{n=0}^{\infty} \frac{(-1)^n}{\pi^{n/2} n! \sqrt{n+1}} \tau^n$$

Explicitly, the first few terms are

$$\eta(\tau) \simeq 1 - 0.39894228 \tau + 0.09188815 \tau^2 - 0.01496559 \tau^3 + 0.00188801 \tau^4 - \cdots$$