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Abstract

Observations with the Rossi X-ray Timing Explorer have revealed a number of

characteristic frequencies of variation in the X-ray emission from accreting neutron

stars and black holes. These frequencies are large enough that they must be affected

by the strongly curved spacetime near these compact objects. As a result, study of

them has the potential to probe strong gravity, and may also constrain the state of

dense matter in neutron stars. I discuss the phenomenology of these oscillations as

well as current ideas about their causes and implications.

1 Introduction

Neutron stars and black holes represent extreme physics and states of matter in many ways.

For example, the most strongly curved spacetime in the universe is near black holes and

neutron stars, and the densest non-singular matter and strongest magnetic fields in the

universe are found in neutron stars. Therefore, study of these ultracompact objects can

teach us about fundamental physics as well as astrophysics.

In this review, I discuss the phenomenon of quasiperiodic brightness oscillations (QPOs)

from black holes and weakly magnetic neutron stars, and what we can learn from them

about strong gravity and dense matter. After a brief discussion in § 2 of the information

that we have available, in § 3 I give highlights of the observations. In § 4 I give some basic

considerations for models, and in § 5 I discuss in depth the principles behind beat frequency

models of neutron star QPOs. This is done for pedagogical purposes, to explore how an

astrophysical model can be constructed, but is not meant to imply that there is complete

agreement in the community that this is the correct class of models. In § 6 I give an overview

of model ideas for black hole QPOs, and in § 7 I indicate how neutron star QPOs can be

used to probe strong gravity and dense matter, independent of detailed models. In § 8 I

discuss what qualitative advances would be possible with a future high-area X-ray timing

mission, and I conclude in § 9. In the appendices I give some basic derivations of length and

time scales, and some sample exercises with hints.
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2 Extreme Physics and Timing Phenomena

We are hampered in our study of astrophysics because of the reality that astronomy is a “look

but don’t touch” science; we can observe objects from a distance, but not experiment with

them. This is rather a fortunate situation for life, which would otherwise be substantially

challenged by, e.g., neutron star surface gravitational fields a hundred billion times that of

Earth. This does mean, though, that astrophysicists are required to make indirect inferences.

We can therefore ask what information is in principle available. With perfect instruments,

we could have imaging, spectroscopy, and timing information.

2.1 Imaging

For stellar-mass compact objects, imaging is out of the question in the near term. Consider

a 10 km radius neutron star that is at a distance of 100 pc, which is fairly close. The angular

size is 3 × 10−13 radian, or about 6 × 10−8 arcseconds. A diffraction-limited telescope at

0.5µm would need to have an effective aperture of roughly 2000 km to achieve this resolu-

tion. Obviously this is impossible for a single telescope, but interferometric arrays might be

constructed in the distant future at this level (in space, to avoid atmospheric interference).

The supermassive black hole in the center of our Galaxy, with a mass of ≈ 4 × 106 M⊙ and

a distance of ≈ 8 kpc (e.g., [1]), would have an angular size of 5 × 10−11 radians or 10−5

arcseconds. There is currently discussion of X-ray interferometric experiments that would

achieve such a resolution, and would thus be able to image the event horizon for the Galactic

center black hole and the ≈ 3 × 109 M⊙ black hole in the center of the galaxy M87, but not

many others. Imaging, therefore, is unlikely in the near future to contribute significantly to

our understanding of the regions close to neutron stars and black holes.

2.2 Spectroscopy

The next obvious possibility is spectroscopy, which has contributed overwhelmingly to every

field of astronomy. This is a field that actually has benefited significantly from labora-

tory experiments. Measurements of molecular, atomic, and nuclear energy levels, and the

strengths of transitions between states, have historically allowed inferences of compositions,

temperatures, densities, magnetic field strengths, rotation rates, and bulk velocities from

many astronomical sources. Can spectroscopy make a similar contribution to the study of

compact objects?

The answer is yes, but a qualified yes. As shown in Appendix 1, near a compact object

the temperature of an accretion disk is millions of degrees Kelvin. This implies that all

the hydrogen and helium will be fully ionized, and that even heavier elements such as iron
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will be almost completely ionized. This reduces the number of lines or edges that can be

observed, but does not eliminate them completely. In addition, the rapid motions deep

in the gravitational well tend to smear out lines. As an example, the speed of a particle

at the innermost stable circular orbit (ISCO; see Appendix 1) in a Schwarzschild (non-

rotating) spacetime is half the speed of light, as measured by an observer in a local static

frame. This causes a spectral line to broaden by some tens of percent of its rest frame

energy, reducing contrast and making the line tougher to detect. Nonetheless, these effects

have been seen. Iron Kα line fluorescence, broadened by Doppler shifts and reddened by

gravitational redshifts, has been seen from both stellar-mass and supermassive black holes

(for a review, see [2]). However, most spectral lines are smeared out or ionized away, making

spectroscopy much more difficult to apply than it is for planets, stars, and galaxies.

2.3 Timing

Our remaining possibility lies in the temporal variations in the flux from accreting neutron

stars and black holes. As demonstrated above, the temperatures are high enough that most

of the emission will be in X-rays. Modern satellites can detect the time of arrival of each

X-ray photon that hits the detector (current detectors have an area of up to a few thousand

square centimeters), with an accuracy of microseconds. This produces a countrate time

series c(t), which can be Fourier transformed and squared to give a power density. The

normalization is not unique, but it is particularly convenient to use the Leahy normalization

(see [3] for a detailed discussion of timing techniques):

P (ω) = (2/N)
∣

∣

∣

∣

∫ T

0
c(t) exp(−iωt)dt

∣

∣

∣

∣

2

, (1)

where N is the total number of counts and T is the duration of the observation. This has

the property that pure Poisson noise has a chi squared distribution, with the probability

of a power greater than P in a given bin being exp(−P/2). This makes it straightforward

to estimate the chance probability of a particular peak in a power density spectrum. In

addition, the fractional root mean squared variability at frequency ω is [P (ω)/N ]1/2.

The power density spectra of accreting black holes or neutron stars have many features

analogous to an energy spectrum. Long stretches are often well-described by power laws

(similar to a continuum spectrum), with occasional changes in the slope (analogous to edges)

and sharper features (corresponding to spectral lines). An exactly periodic variation in the

brightness (e.g., from a pulsar) would show up as a delta function for a long observation. In

addition, there are a number of broader peaked features seen in the power density spectra.

These are the quasi-periodic brightness oscillations, and are the subject of this review.
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3 QPOs from Neutron Stars and Black Holes

We will focus on neutron stars or black holes accreting from low-mass stars, which have

masses <
∼M⊙. Typical power density spectra are shown in Figure 1 for neutron stars and

black holes. Only the high frequency portions are shown, because these have attracted the

most theoretical interest. At first glance the power density spectra look similar, because

both have a pair of high-frequency QPOs. However, there are important differences.

Figure 1: Sample high-frequency quasi-periodic oscillations from a neutron star (Sco X-1,
left, from [5]) and a black hole (GRS 1915+105, right, summarized in [6]). Note that the
neutron star power density has an arbitrary normalization. The figure for the black hole
shows power density spectra from two different states, demonstrating the constancy of the
QPO frequency. Neutron star QPOs are higher frequency, stronger, and sharper than black
hole QPOs, and neutron star QPOs change significantly as the flux changes.

Neutron star high frequency QPOs:

• Have frequencies that change by up to a factor ∼ 2. The frequencies tend to increase

with increasing flux, although the short-term behavior can be complicated.

• Have a frequency separation ∆ν between the pair that, in many sources, appears to

be related to the spin frequency νspin by ∆ν ≈ (1
2

or 1)νspin. The frequency separation

changes in several sources, hence this relation is not exact, but it is close enough in

many sources to be striking (see Table 1).
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• Are strong, with fractional rms amplitudes up to ∼ 15% in the 2–60 keV energy band.

The fractional amplitude tends to increase with increasing photon energy.

• Are sharp, with quality factors Q ≡ ν/FWHM up to ∼ 200 in some sources, where

FWHM is the full width at half maximum for the QPO.

• Have no preferred frequency ratio (see Figure 2, for the ratio of QPO frequencies in

the source Sco X-1).

• Are very high frequency, ranging between ∼ 500 − 1330 Hz.

For a more detailed discussion of these and other properties, see [4].

Table 1: Spin frequency and frequency separation for neutron star low-mass X-ray binaries.
4U 1702, SAX J1808, and KS 1731 have single measurements of ∆ν, with uncertainties
indicated.

Source νspin (Hz) ∆ν (Hz)
4U 1916–053 270 290–348
4U 1702–429 329 333±5
4U 1728–34 363 342–363
SAX J1808–3658 401 195±6
KS 1731–260 524 260±10
4U 1636–536 581 250–323
4U 1608–52 620 225–313

Figure 2: Ratio of the upper to lower
QPO frequencies in Sco X-1, versus the
frequency of the upper peak QPO. The
dotted line marks a 3:2 ratio. Unlike in
black hole sources, neutron star QPOs
do not cluster around a 3:2 ratio. Data
kindly provided by Mariano Méndez.
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Black hole high frequency QPOs:

• Have essentially constant frequencies, changing by no more than a few percent even as

the flux changes by almost an order of magnitude.

• Are weak, with fractional rms amplitudes typically < 2% in the 2–60 keV energy band.

Like neutron star QPOs, the fractional amplitude increases with increasing energy.

• Are broad, with typical quality factors of only a few (the source GRS 1915+105 is the

record holder, with Q ≈ 20 in some observations).

• Have a frequency ratio that is close to 3:2 in several sources. However, the weakness

and breadth of the QPOs means that the centroid frequency of a QPO has significant

uncertainty, hence the ratio of the two QPO frequencies has large error bars (see

Figure 3).

• Are lower frequency, ranging from ∼ 40 − 450 Hz.

For more details on spectral and timing properties of black hole binaries, see [6]

Figure 3: QPO frequency ratios and un-
certainties for three black hole sources:
GRS 1915+105 (left), XTE J1550–564
(middle), and GRO J1655–40 (right).
In all cases the ratio is consistent with
3:2 (indicated by the dotted line), al-
though the uncertainties are substantial
and other ratios are also allowed. Note
that, unlike for neutron star QPOs, the
frequencies of black hole high-frequency
QPOs do not vary significantly.

In addition to the QPOs seen during accretion-powered emission, many neutron stars

in low-mass X-ray binaries also display nearly coherent oscillations (i.e., very sharp QPOs,

with quality factors on the order of 1000 or more) during thermonuclear X-ray bursts (see

Figure 4). Thermonuclear X-ray bursts, sometimes called type I bursts in the literature,

occur because the hydrogen or helium (or sometimes, carbon) that has piled up on the

surface because of accretion can become unstable to nuclear burning (see, e.g., [7] for a
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review of the nuclear physics of bursts). Briefly, when matter is at very high densities,

fusion can happen due to quantum tunneling even if the temperature is low (this is called

“pycnonuclear”, or “cold”, fusion to contrast it with thermonuclear fusion). The fusion

releases energy, increasing the local temperature, which increases the fusion rate. If the

rate of energy release increases faster than the cooling rate, there is a runaway and all of

the fusable material fuses in a short time. If the material is primarily helium, the fusion

happens so rapidly that the limiting timescale of the observed burst is the time needed for

photons to diffuse from the burning layer (typically at a column depth of ∼ 108 g cm−2) to

the surface, which is a few seconds. If the material is primarily hydrogen, then weak decay

timescales are the limiting factor and the burst lasts longer.

Figure 4: Thermonuclear burst from
4U 1702–429 with nearly coherent oscil-
lations (from [8]). Shown are both the
relative flux and the burst oscillation
frequency as a function of time. This is
a typical helium-dominated burst, last-
ing a few seconds, and it shows that
although the frequency is close to con-
stant throughout, there is a steady rise
of a few Hertz.

Early analyses of this process assumed spherically symmetric burning for simplicity. How-

ever, it was pointed out that accretion onto the surface need not be spherically symmetric

(e.g., if a magnetic field channels matter), hence the burning is at least a two-dimensional

phenomenon. Indeed, when nearly coherent oscillations were discovered from many sources

(see Table 2), they were interpreted almost immediately as “hot spots”, whose observed

flux was modulated at the stellar rotational frequency. This general idea is now universally

believed, because bursts with oscillations were observed from the millisecond X-ray pulsars

SAX J1808–3658 ([9],[10]) and XTE J1814–338 ([11]), and the burst oscillations are at the

same frequency as the rotational frequency inferred from the persistent oscillations.

There are, however, some puzzles remaining. The frequency during a burst is not exactly

constant, typically rising by 1–3 Hz to an asymptotic frequency (and occasionally reaching

a maximum and then dropping; see [12]). In addition, it is not clear why the spot would

remain hot and confined for the entire burst, rather than spreading rapidly over the star and

reducing the amplitude of oscillations. For that matter, given that the inferred magnetic

dipole moments of neutron stars in low-mass X-ray binaries are rather weak (equating to

∼ 107−10 G at the stellar surface; see Appendix 1), it is not obvious that the accreting matter
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could ever be confined in a small region. Without confinement, the matter should spread

over the surface within tenths of a second. Therefore, there are many details about the

observed oscillations that are not understood, but there is at least a clear identification of

the burst oscillation frequency with the stellar spin frequency.

Table 2: Spin frequencies of neutron stars in low-mass X-ray binaries. Most spin frequencies
are inferred from thermonuclear burst brightness oscillations; the five persistent oscillators
are marked.

Source νspin(Hz) Persistent?
EXO 0748-676 45
XTE J0929-314 185 Y
XTE J1807-294 191 Y
4U 1916-053 270
XTE J1814-338 314 Y
4U 1702-429 329
4U 1728-34 363
SAX J1808-3658 401 Y
SAX J1748.9-2021 410
XTE J1751-305 435 Y
KS 1731-260 524
Aql X-1 549
MXB 1659-298 567
4U 1636-536 581
MXB 1743-29 589
4U 1608-52 620

4 Models of QPOs

A natural starting point for QPO models is to determine what types of processes might

produce frequencies in the observed range. We find that the fundamental source of the

QPOs must be very close to the compact objects, hence the QPOs are informative about

strong gravity and dense matter. This conclusion follows because only near a neutron star

or black hole can any fundamental time scales (e.g., orbital, vibrational, free fall, etc.) be

as short as milliseconds.

More specifically, one can consider the fundamental frequencies of a test particle in

geodesic motion, i.e., under the influence of only gravity. If we consider such a particle

in initially circular motion in the equatorial plane of a spinning compact object (but, of

course, outside the object), then if the particle is perturbed one has the orbital frequency,
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the radial epicyclic frequency (i.e., the frequency to undergo a full cycle in radial motion),

and the vertical epicyclic frequency (i.e., the frequency to undergo a full cycle in latitudinal

motion). In Newtonian gravity, all these frequencies are degenerate, but deviations from a

1/r2 acceleration law and dragging of inertial frames cause them to separate when close to a

rotating object. If the compact object is a black hole, then the external spacetime geometry

is the Kerr spacetime, and the frequencies are

Orbital frequency:

2πνK = (GM/r3)1/2
[

(1 + jr̂−3/2)
]−1

. (2)

Radial epicyclic frequency:

νr = |νK |
(

1 − r̂−1 + 8jr̂−3/2 − 3j2r̂−2
)1/2

. (3)

Vertical epicyclic frequency:

νθ = |νK |
(

1 − 4jr̂−3/2 + 3j2r̂−2
)1/2

. (4)

In these expressions, r̂ ≡ rc2/GM for radius r and gravitational mass M of the central object,

and j ≡ cJ/GM2 is the dimensionless angular momentum (where J is the angular momentum

itself). Black holes have −1 ≤ j ≤ 1; negative values indicate particles on retrograde orbits,

and j = 0 is a nonrotating black hole, which is described with the Schwarzschild spacetime.

Note that all frequencies are proportional to 1/M at fixed r̂. Therefore, the low frequencies

of black hole QPOs compared to neutron star QPOs could be a consequence of the higher

masses of black holes. At the ISCO, νK ≈ 2200 Hz(M⊙/M) for j ≪ 1.

These expressions are exact for black holes, but at order j2 the spacetime geometry

around a rotating neutron star deviates from these formulae (at lower orders, the spacetimes

are identical; see [13]). In practice, however, known neutron stars in low-mass X-ray binaries

are likely to have j < 0.2, so the Kerr expressions are probably sufficiently accurate for most

purposes. See Figure 5 for a plot of these frequencies versus radius for M = 10 M⊙ and

j = 0.5. Note that the orbital frequency is always the largest of the three, and that the

radial epicyclic frequency vanishes at the ISCO, as it must because at that radius there is

no restoring acceleration if the particle moves inwards.

Although these geodesic frequencies are interesting starting points for models, a more

detailed picture requires some underlying physics that would select a particular frequency or

radius. This is especially restrictive for neutron stars, where the QPO can be very narrow

indeed. We now consider one particular class of NS QPOs, the beat frequency models. We

do not intend to imply that this is the only model under consideration, but we want to give

an example of how one constructs a detailed astrophysical model.
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Figure 5: Orbital (solid line), verti-
cal epicyclic (dashed line), and radial
epicyclic (dotted line) frequencies ver-
sus radius for prograde orbits around a
black hole with spin parameter j = 0.5.
The radial epicyclic frequency becomes
zero at the ISCO, which is 4.23 GM/c2

for j = 0.5.

5 Beat Frequency Models for NS QPOs

Observations of neutron star QPOs are now rather detailed, thanks to the timing capability,

collecting area, and flexible scheduling of the Rossi X-ray Timing Explorer (RXTE). More

than twenty systems display a pair of high-frequency QPOs (called kilohertz QPOs in this

context, thanks to their ∼ 500−1300 Hz range). Many trends and exceptions to those trends

have been discovered. In fact, there is so much information on these systems that no simple

model can hope to fit every single bump and wiggle in every power density spectrum. It is

therefore common to focus on especially important trends and model those.

One striking aspect of neutron star kHz QPOs is that the frequency separation ∆ν

between a pair of QPOs in a given source is often very close to either νspin or νspin/2, where

the spin frequency νspin is inferred from either persistent pulsations during accretion-powered

emission, or from the frequency of brightness oscillations during thermonuclear X-ray bursts.

See Table 1 for several cases. On the other hand, ∆ν is not exactly constant (see Table 1);

it tends to decrease with increasing frequency, but by at most a few tens of Hertz, which is

only a few percent of the QPO frequencies themselves.

How should this be interpreted? This is an example of how one must decide which aspects

of the data are fundamental, and which are secondary. In my opinion, the near harmonic

relation between ∆ν and νspin is a clear indication that the spin frequency is somehow

communicated to the accretion flow. Pursuing this line of thought leads to beat frequency

models.

To understand the principle behind beat frequency models, consider the hands of a clock.

Suppose that the minute hand and the hour hand are wired in such a way that every time
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they are perfectly lined up, a bell sounds. How frequently will the bell sound? If the

frequency of the minute hand is νminute, and of the hour hand is νhour, then the bell will

sound with a frequency νbell = νminute − νhour. The negative sign arises because the minute

and hour hands are turning in the same direction. In a mutant clock whose minute and hour

hands turn in opposite directions, the frequencies would be added. In accreting neutron star

systems, the torque applied by accretion is expected to at least roughly align the rotational

axes of the star and disk, hence all such spins should be in approximately the same direction.

A key aspect of beat frequency models is that they generate only a single sideband

frequency, rather than two frequencies. For example, consider an alternate model in which

you have frequencies ν1 and ν2, producing an amplitude of the form

A = cos(2πν1) cos(2πν2) . (5)

What frequencies does this generate? Given that

cos(2πν1) cos(2πν2) =
1

2
cos[2π(ν1 + ν2)] +

1

2
cos[2π(ν1 − ν2)] , (6)

this modulation mechanism generates equally strong oscillations at ν1 + ν2 and ν1 − ν2.

However, the two QPOs seen from neutron star sources are not equivalent. The often differ

strongly in strength and width (see [4]). Therefore, it is thought that one frequency (the

upper frequency, usually) is in some sense a fundamental frequency, and the other is produced

by modulation of that fundamental frequency. Returning to the clock analogy, it would be

as if a bell sounds every time the minute and hour hands line up, and when the minute hand

hits 12.

To make this a more physically based model, it is necessary to answer at least two

important questions. First, what sets the particular frequency of the upper QPO? Note that

the mechanism has to be able to allow large changes in frequency in different source states,

yet at any given time the QPO that is produced has to be sharp. Second, how can νspin/2

appear in the problem? There are many straightforward ways to involve νspin, but half the

spin frequency is not so clear. We will now address these issues in order.

5.1 Candidates for sharp frequencies

Our first task is to establish a frequency that is very sharp, yet can change substantially

depending on the properties of the accretion. The requirement of change means that the

frequency cannot be associated solely with the star or with the properties of the external

spacetime, because these change on timescales of millions of years, much longer than the hour

timescales on which the frequencies are observed to change. Therefore, we have to focus on

the gas in the accretion disk. In addition to the three epicyclic frequencies discussed above,
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we could also imagine global oscillation modes of the disk, or possibly local oscillation modes

of some narrow annulus. As we will explore more thoroughly when we discuss black hole

QPOs, global modes tend to be relatively independent of disk properties, hence are not

ideal for our current purposes. The other possibilities (epicyclic frequencies or local modes)

depend on the radius of the disk at which they are generated, therefore our search for a

sharp frequency reduces to a search for a sharp radius.

What are candidates for a sharp radius? We need to think of places where the properties

of the accretion disk undergo dramatic changes over a fractionally small range in radii.

Examples are:

• The boundary layer where the disk plasma meets the star.

• The innermost stable circular orbit.

• The transition region where the flow becomes strongly affected by the stellar magnetic

field.

The third option is a promising explanation for some of the lower-frequency QPOs seen

in neutron star low-mass X-ray binaries. However, it is not sharp enough to explain the

kilohertz QPOs. The ISCO is at a fixed radius, hence cannot produce changes in frequency.

The boundary layer is also at a fixed radius. In principle one could imagine that as the

vertical or radial thickness of the layer changes in response to accretion rate, the frequency

could change as well, but it is difficult to believe that a narrow QPO could emerge from the

boundary layer given that it should be rife with strong shocks and turbulence.

We are therefore driven to look for another radius. Miller, Lamb, & Psaltis [14] propose

that a good candidate is the region in the flow where the inward radial velocity increases

sharply with decreasing radius. Because this region usually corresponds to where the radial

velocity goes from subsonic to supersonic, we adopted the term “sonic point” as a convenient

descriptor. Note, however, that it is the rapid increase in radial speed, rather than whether

the flow is subsonic or supersonic, that is the key here.

The sharp transition in radial speed occurs because of the effects of radiation drag.

Consider an element of gas in the midplane of a geometrically thin but optically thick disk.

No radiation from the star affects this gas, hence it spirals in slowly under the influence of

magnetic transport (see [15] for a discussion). Close enough to the star, however, the radial

optical depth from the surface of the star becomes small enough (an approximate value is

τ ≈ 5) that some of the radiation from the star can reach the gas element without having

scattered and isotropized in the disk. Observed neutron stars rotate more slowly (a maximum

of ∼ 600 Hz) than the orbital frequency near the star (typically ∼ 1000 − 1500 Hz), and of
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course the gas is at a larger distance than the stellar radius. Therefore, the specific angular

momentum of the radiation is less than that of the gas element. As a result, on average,

when the radiation scatters off the gas element, the gas element loses angular momentum.

What happens then? A particle in a nearly-circular orbit that loses angular momentum

will fall towards the star. This means that the radial velocity increases. By continuity,

the increase in radial velocity causes a decrease in the density. The decrease in the density

lowers the optical depth to the surface of the star, letting more low angular momentum

radiation scatter and increasing the angular momentum loss rate of the matter. This speeds

up the inward radial velocity of the matter, and the whole process is one of positive feedback.

Miller et al. [14] find that quantities such as the radial speed and optical depth undergo large

changes on length scales that can be < 1% of the radius, which is the sharpness required by

the observed QPO widths.

Note that this mechanism provides a sharply defined radius that could be used as an

input in more general classes of models, not just beat frequency models. For example,

Stella & Vietri ([16]) have proposed that the QPOs are in fact direct reflections of epicyclic

frequencies of test particles on geodesics. D. Psaltis and C. Norman (unpublished) suggest

that these might really be oscillation modes of a thin annulus in a disk, and that the radius

of the annulus could be the sonic point radius. In these models the relation ∆ν ≈ νspin or

νspin/2 is not expected, hence we will not discuss them further here, but it is important to

emphasize that the sharp transition expected at the sonic point is a general feature.

In beat frequency models, the final link is a proposed mechanism by which the orbital

frequency at the sonic point is transformed into the upper QPO. Miller et al. [14] suggest that

density enhancements (“clumps”) in the flow are constantly being created and destroyed,

but that a clump near the sonic point can have its gas spiral onto the stellar surface in a

stream, which produces a bright spot on the surface. As this impact point moves around the

star, its brightness modulations are seen by a distant observer. Miller et al. [14] show that

the observed frequency of the spot is the orbital frequency at the sonic point, and not the

stellar rotation frequency. Perhaps the easiest way to see this is to consider a nonrotating

star, and imagine a satellite orbiting above it with someone pouring paint from the satellite.

As the satellite orbits, the paint will not hit just a single point on the star, but will rather

make a band around the entire star, at the orbital frequency of the satellite. Similarly, the

gas from the clump will hit the star as the clump orbits, and the rotation of the star is

essentially irrelevant for the generation of the upper QPO.

Production of the lower QPO in beat frequency models requires interaction with a second

frequency. If the separation is ∆ν ≈ νspin, several possibilities exist. In the original sonic

point model paper, Miller et al. [14] suggested that interaction with the stellar magnetic field
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(which, of course, rotates at νspin) would do the trick. For example, when the clump sweeps

past a magnetic maximum, it might lose gas at an enhanced rate. This would mean that the

stream of gas from the clump has density maxima and minima, leading to modulation of the

accretion rate and hence of the flux. This modulation would occur at roughly νsonic − νspin.

The clump itself will drift in slowly as it orbits, and as [17] show this will produce some

frequency changes that could explain why ∆ν is not exactly constant.

However, detailed observations of the transient low-mass X-ray binary SAX J1808–3658,

which has a known spin frequency of 401 Hz, show that the frequency separation is actually

200 Hz ([18],[19]). Therefore, new ideas are needed, which we now discuss.

5.2 Spin frequency resonance

At first glance, one might think it straightforward to involve half the spin frequency in the

flow. A standard guess involves something related to geometry. For example, is it possible

to have some two-fold symmetry on the star that leads to νspin/2?

No, it isn’t. To see this, return to the clock analogy. Suppose that there are now two

hour hands, one fixed at 12 and the other fixed at 6. The minute hand moves as normal,

and a bell sounds when it aligns with either hour hand. The frequency is now 2νminute. More

generally, if there are two hour hands 180◦ apart that move at an angular frequency νhour,

the observed frequency is simply 2(νminute − νhour). N -fold symmetry produces N times the

fundamental beat frequency, so this is not a way to have νspin/2 appear.

There is, however, an elegant way that νspin/2 can affect the flow, and it involves a

resonance. Consider an element of gas in the disk, and assume that this gas is essentially

orbiting in a circle at frequency νorb. Suppose that, as measured in the rest frame of the

element, the element is subjected to a vertical forcing term with frequency νforce,rest. At most

forcing frequencies, over many orbits the phases of the forcing will add incoherently, and the

vertical motion will not be large. However, if the vertical motion has a natural frequency,

then forcing at that frequency will lead to resonance and will drive substantial motion.

Indeed, there is such a natural frequency. Again, as measured in the rest frame of the gas

element (which is the orbital frame at that radius), we can consider the observed frequency

of free vertical motion. This is just the vertical epicyclic frequency that we discussed in § 4.

Thus, if the forcing frequency as measured in the orbital frame equals the vertical epicyclic

frequency, a resonance occurs, so

νvert = νforce,rest . (7)

Let us now say that the forcing frequency is νforce as measured in a global, nonrotating
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frame. The frequency observed in the orbiting frame is then

νforce,rest = νforce − νorb . (8)

Combining these two equations we have

νvert = νforce − νorb

νvert + νorb = νforce .
(9)

From Figure 5 we see that the vertical epicyclic frequency is very close to the orbital frequency

for all radii of interest. In addition, we will assume that the forcing frequency in the global

frame is just the stellar spin frequency. Therefore, νvert ≈ νorb, νforce ≈ νspin, and

2νorb ≈ νspin

νorb ≈ νspin/2 .
(10)

This effect is displayed in Figure 6 (from [20]), which shows a simple model of the oscillation.

As predicted, the vertical excursions of gas in the disk occur most strongly at the radius

giving νorb = νspin/2.

Figure 6: Simulated response of accre-
tion disk to driving force at νspin =
400 Hz. The resonance at νspin/2 pro-
duces a sharp response far stronger than
at any other radius in the disk. Original
figure and caption from [20].

Generically, then, one could imagine a flux modulation at νsonic that, via a beat frequency

mechanism, also produces a flux modulation at νsonic−νspin/2. For example, if the disk (or a

particular gas element) has large vertical excursions at this particular radius, then reflection

or obscuration of the flux at νsonic by the raised portion of the disk could produce the required

modulation at the beat frequency (see [20]).

There is, however, a complication. It is not always the case that ∆ν ≈ νspin/2. There

are several well-observed sources for which ∆ν ≈ νspin. Perhaps in such cases some of the
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previously considered mechanisms operate, but it turns out that the spin-resonance picture

described above can also explain separation by the spin frequency.

To see this, let us contrast a situation in which there are very few clumps at the spin

resonance radius (i.e., where νorb ≈ νspin/2), so this is rough flow, with a case in which there

are many clumps at the spin resonance radius, i.e., comparatively smooth flow.

First, consider a single clump, which orbits at ≈ νspin/2. For specificity, let us assume

that the driving force is magnetic in origin. That is, we suppose that when the magnetic

maximum is aligned with the orbital phase of the clump, there is a downward push. When

a system is driven by a periodic force, it rapidly becomes in phase with the driving force.

Therefore, the clump will be at its vertical maximum when its orbital phase is aligned with

that of the magnetic maximum. However, since there is only a single clump, the main

modulation relevant to the beat frequency mechanism is simply its orbital motion, hence the

dominant difference frequency is νspin/2.

Now imagine a very large number of clumps. Each of them orbits at ≈ νspin/2. In

addition, each of them is phased with the driving force, therefore each of them reaches its

vertical maximum just when its orbital phase is aligned with the magnetic maximum. As a

result, at any given instant, the greatest vertical extent at that radius is at the location of

the magnetic maximum. Therefore, the vertical maximum tracks the magnetic maximum,

which is simply another way of saying that the vertical maximum has a frequency equal to

νspin. Note that this is so even though no single clump moves at νspin. The pattern speed

moves at νspin, twice as fast as any individual element of gas at that radius. Similarly, in a

water wave, individual fluid elements undergo circular motion even as the wave itself sweeps

into shore.

If the number of clumps is large (i.e., if the flow is comparatively smooth), then it is

this pattern speed that is most important in the beat frequency mechanism (just as one

perceives a water wave rather than the motions of individual fluid elements). Figure 7, from

[20], shows the results of a simple computation of this effect. With a small number of clumps

the individual motion dominates, whereas with a large number the pattern dominates. In

this way, one can explain observations of ∆ν ≈ νspin/2 and ∆ν ≈ νspin in a single model.

In summary, it should be emphasized again that this is a detailed description of a single

class of models. There is no universal agreement about the cause of the kilohertz QPOs in

neutron stars. Various people have suggested ideas about geodesic frequencies ([16]), disk

resonances ([21]), disk modes ([22]) and photon bubble interactions at the stellar surface

([23]). However, in my opinion, the link between ∆ν and νspin makes beat frequency models

the most promising at this point, which is why I have focused on them.
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Figure 7: Simulated power spectra for disks containing a small number of clumps at the
resonance radius (left panel) and a large number of clumps at the resonance radius (right
panel). Here νsonic = 1000 Hz is the orbital frequency at the sonic radius, and νspin = 400 Hz.
These power spectra demonstrate that when the flow is clumpy, the most prominent beat
frequency is the one with the motion of individual clumps, at νspin/2. When the flow is
smoother, however, it is the beat with the pattern frequency νspin that is the strongest. This
simulation does not include any signal at νsonic. Original figure and caption are from [20].

6 Models of Black Hole QPOs

There is even less agreement about the physical cause of high-frequency black hole QPOs

than there is for neutron star QPOs. This is true for two reasons. First, the observations are

not so easy, because the QPOs are weaker and broader than they are in the kilohertz QPOs,

hence fine details of their phenomenology are tougher to establish. Second, unlike in the

neutron star case, there does not exist a single frequency (such as the spin frequency) whose

origin we know, thus there is no fixed point from which models can spin off. Nonetheless,

theory and observations have suggested certain classes of models.

The stability of the high-frequency QPOs has led to two main categories of models:

• Global modes in the disk.

• Resonant interactions between characteristic frequencies.

Global oscillation modes.— Global modes have been analyzed on a hydrodynamic back-

ground (no magnetic fields) in spacetimes that are pseudo-Newtonian [24]-[28], Schwarzschild
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[29], and Kerr [30]-[36]. The basic idea is that a geometrically thin disk has certain charac-

teristic oscillation modes, and that these could affect the overall energy release and/or the

properties of the corona in a way consistent with the observations of QPOs. The modes are

divided into three types. The g-modes have gravity as their primary restoring force. The

p-modes have pressure gradients as their main restoring force. The c-modes, a new type of

mode compared to more familiar modes in spherically symmetric systems such as stars, are

nonaxisymmetric twisting or corrugation modes of geometrically thin disks.

The appeal of these ideas is that they provide a natural physical mechanism by which

a particular frequency is selected. As pointed out in the references above, the maximum in

the radial epicyclic frequency curve implies that radial modes can be confined in a cavity,

with a given frequency. The mode frequencies depend only very weakly on the accretion

rate, through pressure gradient effects (e.g., [37]). This may be consistent with the slight

variations in frequency seen in, e.g., GRS 1915+105 [6].

These models, however, have important observational and theoretical question marks.

In the standard disk mode picture, it is expected that there will be multiple modes with

different frequencies, but, at least in the linear treatment, the 3:2 relation is not recovered

naturally. Therefore, observation of such relations in several sources would have to be seen

as coincidental in this picture, although it is possible that non-linear interactions naturally

couple the mode frequencies into a harmonic relationship (see [38] for a recent idea). In

addition, there is the theoretical concern that the perturbation analyses used to derive the

mode properties assume a smooth hydrodynamical background without magnetic fields. It

has been understood for well over a decade that magnetic fields play an essential role in

transporting angular momentum in ionized accretion disks, through the magnetorotational

instability (see, e.g., [15] for a review). A consequence of this is that the disk is highly

turbulent. It may therefore be that the hydrodynamical modes do not exist at all in a

magnetohydrodynamic disk.

Resonance ideas.— A different approach has been to take the 3:2 frequency relations as

fundamental. One suggestion is that the fundamental epicyclic frequencies interact with each

other in a way similar to a parametric resonance [21]. If the frequencies are coupled properly,

this would naturally produce high amplitudes in epicyclic motion when the frequencies were

in a 3:2 relation. However, there is at present no consensus on a physical model that produces

this behavior. That is, although one can set up a mathematical model that generates a

parametric resonance [21], there is not yet a clear candidate for the physical coupling (see

[38] for ideas related to warps). Such a candidate is needed because true geodesic orbits (i.e.,

orbits under only the influence of gravity) do not experience any resonance; the epicyclic

motions are essentially independent of each other. The most straightforward candidates for
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coupling do not work as needed. For example, magnetic coupling between fluid elements

leads to the magnetorotational instability rather than a parametric resonance, and pressure

gradient forces tend to lead to shocks and damping rather than amplification of motion. In

particular, [39] show that substantial radial epicyclic motion is not expected to last for many

cycles, due to dissipation in shocks. In no way does this rule out the general idea, but it

does show that at a minimum there is a major piece of the puzzle missing.

An alternate idea is to consider global modes in a setting that will naturally produce

small integer ratios of frequencies. Rezzolla and colleagues have investigated modes in a

torus with a nearly constant angular momentum profile ([40],[41]). As expected, the natural

mode frequencies are integer multiples of each other. It is, however, necessary for this model

that the modes be confined to a region with well-defined boundaries. It is not clear whether

such a situation can be set up in reality (one possibility is a region near the ISCO that is a

fattened disk), and especially whether such modes could survive in the presence of turbulence.

In particular, the tori considered by Rezzolla et al. have constant or very nearly constant

angular momentum profiles, and hence are close to instability on a dynamical timescale by

the powerful Papaloizou-Pringle instability [42].

In summary, there are a number of analytic and semianalytic ideas for the causes of black

hole QPOs, but there is no consensus and every proposed idea has potentially major hurdles

to overcome before it can be considered physically realistic.

As discussed above, the orbital frequency at the ISCO, which is 220(10M⊙/M) Hz for a

nonrotating black hole, is the theoretical maximum for a reasonably sharp fundamental QPO

(although it is possible for the higher harmonics to have frequencies significantly greater than

νK). Interestingly, the higher-frequency of the two QPOs in GRO J1655-40 has a frequency,

450 Hz, that is larger than the maximum of ≈360 Hz allowed for a nonrotating black hole

of the measured mass (6.0 − 6.6 M⊙; see [43] for a catalog of black hole masses). It has

therefore been argued that the very existence of this QPO argues strongly in favor of frame-

dragging effects [44]. However, there is also a 300 Hz oscillation from this source, leading

to speculation that the fundamental frequency is actually 150 Hz (see [6] for a summary).

In addition, numerical simulations display significant variability even well above the orbital

frequency at the ISCO. The claim of evidence for frame-dragging therefore must wait for the

understanding of these systems that will come from numerical simulations.

7 Neutron Star QPOs as Probes

I have given a summary of one particular model of the kilohertz QPOs found in many

accreting neutron star systems, in which the upper QPO frequency is close to an orbital
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frequency. There are certainly others, the most prominent of which have assumed that

the upper QPO is a vertical epicyclic frequency and the lower QPO is a radial epicyclic

frequency at the same radius, with the radius determined by unknown factors or possibly

by a resonance. In either case, however, it turns out that one can use these QPOs to probe

dense matter and strong gravity.

The key is that, as seen in Figure 5, the orbital frequency and the vertical epicyclic

frequency are very close to each other for realistic stellar angular momenta. For both, it is

clear that the radius at which the QPOs are generated must be (1) outside the star, and

(2) outside the innermost stable circular orbit, because otherwise the oscillations would last

at most a few cycles and would thus not have the observed high quality factor. To first

order in the dimensionless angular momentum j = cJ/GM2, these two constraints turn out

to yield upper limits on both the stellar gravitational mass and the stellar radius [14]:

Mmax = 2.2 M⊙(1000 Hz/νmax)(1 + 0.75j)
Rmax = 19.5 km(1000 Hz/νmax)(1 + 0.2j) .

(11)

Here νmax is the highest frequency QPO observed from a particular source. More generally,

the r > R and r > RISCO limits yield a maximum M and a maximum radius as a function

of M . The highest frequency conclusively observed from any source is νQPO = 1330 Hz,

from 4U 0614+091 [45]. Assuming that the equation of state of neutron star matter is the

same for all neutron stars, the highest-frequency source therefore provides the most stringent

constraints on the masses and radii, and one can in principle eliminate some equations of

state from consideration if they predict too large a radius for a given mass. See Figure 8 for

the current constraints based on the 1330 Hz QPO, compared with the mass-radius relations

that follow from several candidate equations of state.

If one could be confident that a particular QPO is generated very near to the ISCO, then

one would immediately have a good estimate of the mass of the star. More importantly, one

would have evidence for a prediction of general relativity (the existence of unstable orbits)

that has no parallel in Newtonian gravity. Such a discovery would therefore have tremendous

importance, hence it would need to be subjected to a rigorous critical examination.

What might constitute evidence for the ISCO? We know that the frequencies of the QPOs

tend to increase with increasing X-ray countrate. However, we also know that the maximum

QPO frequency is roughly the orbital frequency at the ISCO. Therefore, a frequency versus

countrate behavior that has the usual steep increase followed by a flattening at some fre-

quency, seen reproducibly at a particular frequency for a given source, could be a signature

of the ISCO. Similarly, a sharp amplitude or coherence drop at a fixed frequency for a given

source might be caused by the ISCO.

Indeed, frequency flattening was reported for the source 4U 1820–30 at 1060 Hz [50]. If
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Figure 8: Constraints from orbital frequencies. The 1330 Hz curve is for the highest kilohertz
quasi-periodic oscillation frequency yet measured (for 4U 0614+091 [45]). This curve is
for a nonrotating star; the constraint wedge would be enlarged slightly for a rotating star
(see [14]). The solid lines are mass-radius curves for different representative high-density
equations of state. The mass-radius curves are all for equilibrium nonrotating stars; note
that rotation only affects these curves to second order and higher. Curves N1 and N2 are
for nucleonic equations of state; N1 is relatively soft [46], whereas N2 includes significant
three-body repulsion [47]. PC has a sharp change to a Bose-Einstein condensate of pions
in the core when the mass reaches ≈ 1.8 M⊙ [48]. Equations of state N1, N2, and PC are
not modern (i.e., not fitted to the most current nuclear scattering data), but are included
for easy comparison to previous work on equation of state constraints. Curve S is for a
strange star equation of state [49]. Curve Q is for a quark matter equation of state with
a Gaussian form factor and a diquark condensate (kindly provided by David Blaschke and
Hovik Gregorian). Original figure and caption from my contribution to the proceedings of
the X-ray Timing 2003 meeting in Cambridge, MA, USA.

this was indeed caused by the ISCO, it would imply a mass of 2.2 M⊙, which would have

major implications for the properties of high density matter. In particular, it would suggest
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that such matter is restricted to nucleonic degrees of freedom (rather than quark or hyper-

onic degrees of freedom), and that three-nucleon repulsion is significant. However, further

examination showed that at the point of flattening the source underwent a state change that

could mimic this behavior, hence there is insufficient evidence that this was caused by an

approach to the ISCO. As we discuss in the next section, we anticipate that higher-area

timing instruments will be sensitive to higher-frequency QPOs, allowing an excellent chance

of catching systems with QPOs near their innermost stable circular orbits.

8 Prospects With a Higher-Area Instrument

All of the preceding discoveries were made using the Rossi X-ray Timing Explorer, which has

a maximum collecting area of 6000 cm2. What advances could be expected with a follow-up

instrument with significantly higher area, hence greater sensitivity?

Phenomenologically, we know that for neutron star low-mass X-ray binary sources, νQPO

increases but the amplitude decreases as the countrate goes up. Eventually, therefore, the

QPO simply sinks into the noise. However, since the countrate is still measurable and still is

seen to increase, we can project that either the frequency will continue to go up or there will

be a rollover due to, e.g., effects of the ISCO. Michiel van der Klis (Astronomical Institute

“Anton Pannekoek”, Amsterdam) has estimated based on the frequency and amplitude

trends that a 10 m2 instrument would therefore see QPOs with frequencies >
∼ 1500 Hz in

sources such as 4U 0614+091. This is important, because νISCO < 1500 Hz for M > 1.6 M⊙;

note that neutron stars in low-mass X-ray binaries are expected to have accreted a few tenths

of a solar mass, therefore this is in the right range to detect signatures of the ISCO. Such

high frequencies would also strengthen constraints on the masses and radii of neutron stars

(see Figure 9 for the mass-radius constraint wedge that would follow from νQPO = 1500 Hz).

As pointed out by van der Klis (personal communication), a higher area instrument would

allow another qualitative advance. Currently, even for the relatively strong neutron star

QPOs, it is impossible to detect a QPO within a coherence time (that is, within ν/FWHM

cycles, which is the time over which an oscillation maintains approximate phase coherence).

Instead, it has to be averaged over many coherence times. It is therefore uncertain whether,

for example, the QPO is present at all times or whether it is a superposition of more coherent

oscillations. With a 10 m2 instrument, it would be possible to detect a bright source such

as Sco X-1 within 0.004 s in some states, easily resolving it in a coherence time.

The key advance facilitated by such detections is that they would allow the analysis

of phase-resolved continuum spectra. If, for example, the QPOs are produced by discrete

“clumps”, one would therefore be able to detect Doppler shifts as the clumps orbit. This
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Figure 9: Constraints on mass and ra-
dius for hypothetical detections of a
1500 Hz QPO and a 1800 Hz QPO, if
they are identified with an orbital fre-
quency. At 1500 Hz one expects signa-
tures of the ISCO to be present; a de-
tection of 1800 Hz would present strong
difficulties for standard nucleonic equa-
tions of state. The equation of state
curves are as in Figure 8. Rotational
effects are not included in this figure.
Original figure and caption are from my
contribution to the proceedings of the
X-ray Timing 2003 meeting in Cam-
bridge, MA, USA.

would provide a critical piece of information that is currently impossible to obtain. That is,

the observed frequencies are basically ∼ (GM/r3)1/2, but M and r are not known indepen-

dently. Doppler shifts would provide information about the speed, which is ∼ (M/r)1/2, so

that, modulo an uncertain line of sight inclination, one could determine M and r directly.

Combined with inclination estimates from optical observations of the binary system, this

would produce the very first reliable measurements of the masses of neutron stars in ac-

creting low-mass X-ray binaries, which would then allow much more precise constraints on

radius and hence on the equation of state of neutron star matter.

9 Conclusions

In the last decade there have been enormous advances in the study of QPOs from neutron

stars and black holes. The high frequency QPOs were unknown and unsuspected prior to

the launch of RXTE, but now there are many sources and multiple well-established phe-

nomenological trends. With current data, we are just short of the expected signatures of the

innermost stable orbit, but it is expected that a future high-area timing mission will see this

and allow qualitatively new explorations of strong gravity and dense matter.
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Appendix 1: Basic Compact Object Astrophysics

A neutron star or black hole is most easily observed when it is accreting matter. For stellar-

mass compact objects, this occurs at a high rate only when the object is in a close binary

system and matter flows from the companion star in either a wind or as part of Roche-

lobe overflow. The luminosity produced by an accretion rate Ṁ depends on the accretion

efficiency ǫ via L = ǫṀc2. For matter falling onto a neutron star surface, ǫ ≈ 0.2 − 0.3.

For matter spiraling into a black hole, a usual assumption is ǫ ≈ 0.1. The basis for this

is that in general relativity, circular test particle orbits are unstable inside of the so-called

innermost stable circular orbit. Heuristically, one can understand this based on the idea

that gravity becomes stronger more rapidly with decreasing radius in general relativity than

it does in Newtonian theory. A particle in a circular orbit at some radius therefore has

to have a larger angular momentum than it would in Newtonian gravity, and in fact the

specific angular momentum reaches a minimum, then increases again at smaller radii. This

implies instability, as one can see by considering a small perturbation of such an orbit; a

perturbation inwards leaves the particle with less angular momentum than it needs for a

circular orbit, hence the particle simply spirals inwards rather than undergoing an elliptical

orbit.

For a nonrotating black hole, the radius of the ISCO is 6GM/c2 ≈ 9 km(M/M⊙), where

M is the mass of the object and M⊙ = 1.989×1033 g is the mass of the Sun. It is commonly

assumed that when gas spirals inside the ISCO, it goes into the event horizon without

further loss of energy (this need not be true if magnetic effects are important; see [51]). For

a nonrotating black hole, the specific binding energy (i.e., per unit mass) at the ISCO is

0.057c2, and for a rotating black hole, the specific binding energy is higher for a prograde

orbit, hence the approximation ǫ ≈ 0.1.

Accretion-powered sources are limited in their luminosity, because beyond some critical

luminosity the outward radial force of radiation balances gravity and shuts off the accretion.

For quasi-spherical emission and accretion of fully ionized hydrogen, this critical luminosity

is the Eddington luminosity:

LE = 4πGMmpc/σT ≈ 1.3 × 1038(M/M⊙) erg s−1 . (12)

Here mp is the mass of a proton and σT is the Thomson scattering cross section (which

is relevant if electron scattering dominates the opacity, as it typically does for accreting

stellar-mass compact objects).

The matter flowing onto the compact object from the companion has non-negligible

angular momentum (from the binary orbit, if from nothing else), hence it tends to spiral
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in as a relatively flat “accretion disk”. One well-used model assumes that each annulus of

the disk radiates as a blackbody with some radius-dependent temperature T (r). To get an

order of magnitude estimate of the temperature near the inner portion of the disk, note that

because the energy comes from the gravitational potential, most of the energy is released

fairly close to the central object. Suppose that the luminosity is a fraction η of the Eddington

luminosity, and that the radiating region has a radius equal to that of the ISCO (in reality

most of the emission will be outside the ISCO, but this works for a quick estimate). Then

in cgs units the blackbody equation is

L = σB(πR2)T 4

1.3 × 1038η(M/M⊙) ≈ 1.3 × 108(M/M⊙)2T 4

T ≈ 3 × 107η1/4(M/M⊙)−1/4 K .
(13)

Therefore, objects of a few solar masses accreting near the Eddington rate have temperatures

in the millions or tens of millions of Kelvin.

The high temperature means that matter will be substantially ionized, and capable of

coupling to any magnetic fields present. Black holes have no intrinsic magnetic fields, hence

the only relevent fields are those in the accretion disk itself. In fact, the interaction of

disk fields with the accreting matter is of fundamental importance, and it turns out that it

is the means by which angular momentum is transported (see [15]), and it also generates

turbulence.

Neutron stars do have an intrinsic magnetic field, and this field can couple strongly enough

to the disk plasma to force the plasma to follow field lines near the star. In fact, generally

there is a region very far from the star where the plasma stresses dominate, a region close

to the star where the magnetic stresses dominate, and a transition region in between. This

is seen simply by considering the radial dependences of the stresses. For a dipolar magnetic

field, B ∼ r−3 and the magnetic stress scales as B2 ∼ r−6. Material stresses scale as ρv2,

where ρ is the density and v is the speed of the flow (the nonrelativistic approximation is

good even fairly near the neutron star). The speed scales as v ∼ r−1/2, where we assume

that the motion is mainly orbital. The density depends on the disk half-thickness profile as

well as the radial speed. If we assume that the disk half-thickness h is proportional to r and

that the radial speed is a fixed fraction of the orbital speed, then the equation of continuity

ρAvr = ρ4πhrvr ∝ ρr2vr = const (14)

implies ρ ∼ r−3/2, so that the plasma stresses scale as r−5/2. This is a much weaker de-

pendence on radius than the dependence of the magnetic stresses, hence magnetic stresses

become more important near the star.

Balancing these stresses leads to an “Alfvén radius” of

rA ≈ 3 × 106 cm(Ṁ/1016 g s−1)−2/7(B/108 G)4/7 , (15)
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although careful consideration of the rφ components of the flow suggests that the effective

radius at which torque is applied could be a factor of ∼ 2−3 less than this [52]. Here B is the

surface dipole magnetic field strength; multipolar components, or squeezing of the field if the

torque radius is small enough, will modify this expression. Given enough time, an accreting

neutron star will come to a torque balance, at a spin frequency equal to the orbital frequency

at the torque radius. For the neutron stars in low-mass X-ray binaries, the spin frequencies

(see Table 2) and other observations suggest B ∼ 107−10 G, although direct measures do not

exist. Neutron stars in high-mass X-ray binaries (i.e., with companions of at least several

solar masses) appear to have fields ∼ 1012 G, similar to those of isolated pulsars. Although

many ideas have been suggested for why the field strengths are so different, at this point

there is no consensus.

Appendix 2: Sample Exercises

1. Derive the expression for the Eddington critical luminosity far from a compact object

of mass M . Assume spherical radiation. Remember that the Eddington luminosity is the

luminosity at which the outward radiation force exactly balance gravity, hence you should

simple compute the radiative and Newtonian gravitational accelerations and balance them.

Take the standard assumption that one has fully ionized hydrogen, so that radiation interacts

with the electron via Thomson scattering (cross section σT = 6.65 × 10−25 cm2), but that

the effective mass is the mass of the proton (mp = 1.67 × 10−24 g). For extra thought:

the gravitational acceleration near a compact object differs from the Newtonian value. Does

this change the maximum luminosity observable at a very large distance? Think carefully;

this is tricky.

2. This problem will reproduce the classic Landau derivation of the Chandrasekhar

critical mass for compact objects.

a. Using the uncertainty principle, estimate the Fermi momentum of particles of number

density n. The important thing here is dependences, not constant factors in front.

b. From part a, what are the approximate Fermi energies in the nonrelativistic and

relativistic limits?

c. Consider a star of mass M and radius R that is composed primarily of baryons of mass

mB. Within factors of order unity, compute the total energy per baryon in the star (i.e., the

gravitational potential energy plus the Fermi energy) in the nonrelativistic and relativistic

limits.

d. Based on energy minimization considerations, show that in the nonrelativistic limit

there will always be an equilibrium radius for the star, whereas in the extreme relativistic

limit there is a maximum mass beyond which the star is unstable. Calculate this maximum
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mass, as a function of Planck’s constant, G, c, and mB. What is the value in solar masses if

mB = 1.7 × 10−24 g, the mass of a nucleon?

For extra thought: what are the implied radii if the degeneracy pressure is provided

by electrons (as in a white dwarf), versus neutrons (as in a neutron star)? You can also do

the problem more carefully, to find the dependence of the maximum mass on the number

of baryons per degenerate particle; you should find that the maximum mass you get for a

neutron star is much greater than the actual maximum mass. What is the main physical

effect that we’ve left out, that explains the difference?

3. For a nonrotating star (j = 0), show how the conditions that the orbital radius be

greater than the stellar radius and the radius of the ISCO results in the mass and radius

constraints quoted in § 7.
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[21] M. A. Abramowicz, V. Karas, W. Kluźniak, W. H. Lee, and P. Rebusco, PASJ 55, 467

(2003).

[22] V. Osherovich and L. Titarchuk, Astrophys. J. 522, L113 (1999).

[23] R. I. Klein, J. G. Jernigan, J. Arons, E. H. Morgan, and W. Zhang, Astrophys. J. 469,

L119 (1996).

[24] A. T. Okazaki, S. Kato, and J. Fukue, PASJ 39, 457 (1987).

[25] M. A. Nowak and R. V. Wagoner, Astrophys. J. 378, 656 (1991).

[26] M. A. Nowak and R. V. Wagoner, Astrophys. J. 393, 697 (1992).

[27] M. A. Nowak and R. V. Wagoner, Astrophys. J. 418, 187 (1993).
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