
Tutorial on Gravitational Radiation

By definition, a radiation field must be able to carry energy to infinity.
If the amplitude of the field a distance r from the source in the direction
(θ, φ) is A(r, θ, φ), the flux through a spherical surface at r is F (r, θ, φ) ∝
A2(r, θ, φ). If for simplicity we assume that the radiation is spherically sym-
metric, A(r, θ, φ) = A(r), this means that the luminosity at a distance r is
L(r) ∝ A2(r)4πr2. Note, though, that when one expands the static field of a
source in moments, the slowest-decreasing moment (the monopole) decreases
like A(r) ∝ 1/r2, implying that L(r) ∝ 1/r2 and hence no energy is carried
to infinity. This tells us two things, regardless of the nature of the radiation
(e.g., electromagnetic or gravitational). First, radiation requires time vari-
ation of the source. Second, the amplitude must scale as 1/r far from the
source.

For gravitational radiation, what can vary? Let the mass-energy density
be ρ(r). The monopole moment is

∫

ρ(r)d3r, which is simply the total mass-
energy. This is constant, so there cannot be monopolar gravitational radia-
tion. The static dipole moment is

∫

ρ(r)rd3r. This, however, is just the center
of mass-energy of the system. In the center of mass frame, therefore, this
moment does not change, so there cannot be electric dipolar radiation in this
frame (or any other, since the existence of radiation is frame-independent).
The equivalent of the magnetic dipolar moment is

∫

ρ(r)r × v(r)d3r. This,
however, is simply the total angular momentum of the system, so its con-
servation means that there is no magnetic dipolar gravitational radiation
either. The next static moment is quadrupolar: Iij =

∫

ρ(r)rirjd
3r. This is

not conserved, therefore there can be quadrupolar gravitational radiation.
This allows us to draw general conclusions about the type of motion that

can generate gravitational radiation. A spherically symmetric variation is
only monopolar, hence it does not produce radiation. No matter how violent
an explosion or a collapse (even into a black hole!), no gravitational radiation
is emitted if spherical symmetry is maintained. In addition, a rotation that
preserves axisymmetry (without contraction or expansion) does not generate
gravitational radiation because the quadrupolar and higher moments are un-
altered. Therefore, for example, a neutron star can rotate arbitrarily rapidly
without emitting gravitational radiation as long as it maintains axisymmetry.

This immediately allows us to focus on the most promising types of
sources for gravitational wave emission. The general categories are: binaries,
continuous wave sources (e.g., rotating stars with nonaxisymmetric lumps),
bursts (e.g., asymmetric collapses), and stochastic sources (i.e., individually
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unresolved sources with random phases; the most interesting of these would
be a background of gravitational waves from the early universe).

What is the approximate expression for the dimensionless amplitude h of
a metric perturbation, a distance r from a source? We argued that the lowest
order radiation had to be quadrupolar, and hence depend on the quadrupole
moment I. This moment is Iij =

∫

ρrirjd
3x, so it has dimensions MR2,

where M is some mass and R is a characteristic dimension. We also argued
that the amplitude is proportional to 1/r, so we have

h ∼ MR2/r . (1)

We know that h is dimensionless, so how do we determine what else goes in
here? In GR we usually set G = c = 1, which means that mass, distance,
and time all have the same effective “units”, but we can’t, for example, turn
a distance squared into a distance. Our current expression has effective units
of distance squared (or mass squared, or time squared). We note that time
derivatives have to be involved, since a static system can’t emit anything.
Two time derivatives will cancel out the current units, so we now have

h ∼
1

r

∂2(MR2)

∂t2
. (2)

Now what? To get back to physical units we have to restore factors of G and
c. It is useful to remember certain conversions: for example, if M is a mass,
GM/c2 has units of distance, and GM/c3 has units of time. Playing with
this for a while gives finally

h ∼
G

c4

1

r

∂2(MR2)

∂t2
. (3)

Since G is small and c is large, the prefactor is tiny! That tells us that unless
M and R are large, the system is changing fast, and r is small, the metric
perturbation is minuscule.

Let’s make a very rough estimate for a circular binary. Suppose the total
mass is M = m1+m2, the reduced mass is µ = m1m2/M , the semimajor axis
is a, and the orbital frequency Ω is therefore given by Ω2a3 = M . Without
worrying about precise factors, we say that ∂2/∂t2 ∼ Ω2 and MR2 ∼ µa2, so

h ∼ (G/c4)(1/r)(µM/a) . (4)
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This can also be written in terms of orbital periods, and with the correct
factors put in we get, for example, for an equal mass system

h ≈ 10−22

(

M

2.8 M⊙

)5/3 (
0.01 sec

P

)2/3 (100 Mpc

r

)

, (5)

which is scaled to a double neutron star system. This is really, really, small:
it corresponds to less than the radius of an atomic nucleus over a baseline
the size of the Earth. That’s why it is so challenging to detect these systems!

Remarkably, though, the flux of energy is not tiny. To see this, let’s
calculate the flux given some dimensionless amplitude h. The flux has to
be proportional to the square of the amplitude and also the square of the
frequency f : F ∼ h2f 2. This currently has units of time squared, but the
physical units of flux are energy per time per area. Replacing factors of G
and c, we find that the flux is

F ∼ (c3/G)h2f 2 . (6)

Now the prefactor is enormous! For the double neutron star system above,
with h ∼ 10−22 and f ∼ 100 Hz, this gives a flux of a few hundredths of an
erg cm−2 s−1. For comparison, the flux from Sirius, the brightest star in the
night sky, is about 10−4 erg cm−2 s−1! That means that if you could somehow
absorb gravitational radiation perfectly with your eyes, you would find untold
billions of sources brighter than every star except the Sun. What this really
implies, of course, is that gravitational radiation interacts very weakly with
matter, which again means that it is mighty challenging to detect.

Let’s get an idea of the frequency range available for a given type of
binary. There is obviously no practical lower frequency limit (just increase
the semimajor axis as much as you want), but there is a strict upper limit.
The two objects in the binary clearly won’t produce a signal higher than
the frequency at which they touch. If we consider an object of mass M and

radius R, the orbital frequency at its surface is ∼
√

GM/R3. Noting that

M/R3 ∼ ρ, the density, we can say that the maximum frequency involving
an object of density ρ is fmax ∼ (Gρ)1/2. This is actually more general than
just orbital frequencies. For example, a gravitationally bound object can’t
rotate faster than that, because it would fly apart. In addition, you can
convince yourself that the frequency of a sound wave through the object
can’t be greater than ∼ (Gρ)1/2. Therefore, this is a general upper bound on
dynamical frequencies.
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This tells us, therefore, that binaries involving main sequence stars can’t
have frequencies greater than ∼ 10−3 − 10−6 Hz, depending on mass, that
binaries involving white dwarfs can’t have frequencies greater than ∼ 0.1 −
10 Hz, also depending on mass, that for neutron stars the upper limit is
∼ 1000 − 2000 Hz, and that for black holes the limit depends inversely on
mass (and also spin and orientation of the binary). In particular, for black
holes the maximum imaginable frequency is on the order of 104(M⊙/M) Hz
at the event horizon, but in reality the orbit becomes unstable at lower
frequencies (more on that later).

Now suppose that the binary is well-separated, so that the components
can be treated as points and we only need take the lowest order contributions
to gravitational radiation. Temporarily restricting our attention to circular
binaries, how will their frequency and amplitude evolve with time?

Let the masses be m1 and m2, and the orbital separation be R. We argued
in the previous lecture that the amplitude a distance r ≫ R from this source
is h ∼ (µ/r)(M/R), where M ≡ m1 +m2 is the total mass and µ ≡ m1m2/M
is the reduced mass. We can rewrite the amplitude using f ∼ (M/R3)1/2, to
read

h ∼ µM2/3f 2/3/r

∼ M
5/3

ch f 2/3/r
(7)

where Mch is the “chirp mass”, defined by M
5/3

ch = µM2/3. The chirp mass
is named that because it is this combination of µ and M that determines
how fast the binary sweeps, or chirps, through a frequency band. When the
constants are put in, the dimensionless gravitational wave strain amplitude
(i.e., the fractional amount by which a separation changes as a wave goes
by) measured a distance r from a circular binary of masses M and m with a
binary orbital frequency fbin is (Schutz 1997)

h = 2(4π)1/3G5/3

c4
f

2/3

GWM
5/3

ch

1

r
, (8)

where fGW is the gravitational wave frequency. Redshifts have not been
included in this formula.

The luminosity in gravitational radiation is then

L ∼ 4πr2f 2h2

∼ M
10/3

ch f 10/3

∼ µ2M3/R5 .

(9)
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The total energy of a circular binary of radius R is Etot = −GµM/(2R), so
we have

dE/dt ∼ µ2M3/R5

µM/(2R2)(dR/dt) ∼ µ2M3/R5

dR/dt ∼ µM2/R3 .
(10)

What if the binary orbit is eccentric? The formulae are then more compli-
cated, because one must then average properly over the orbit. This was done
first to lowest order by Peters and Matthews (1963) and Peters (1964), by cal-
culating the energy and angular momentum radiated at lowest (quadrupolar)
order, and determining the change in orbital elements that would occur if the
binary completed a full Keplerian ellipse in its orbit. That is, they assumed
that to lowest order, they could have the binary move as if it experienced
only Newtonian gravity, and integrate the losses along that path.

Before quoting the results, we can understand one qualitative aspect of
the radiation when the orbits are elliptical. From our derivation for circular
orbits, we see that the radiation is emitted much more strongly when the
separation is small, because L ∼ R−5. Consider what this would mean for a
very eccentric orbit (1 − e) ≪ 1. Most of the radiation would be emitted at
pericenter, hence this would have the character of an impulsive force. With
such a force, the orbit will return to where the impulse was imparted. That
means that the pericenter distance would remain roughly constant, while
the energy losses decreased the apocenter distance. As a consequence, the
eccentricity decreases. In general, gravitational radiation will decrease the
eccentricity of an orbit.

Sample problems:
1. What is the number of sources in a given frequency bin for a steady state
population of circular sources?

Answer:

For a circular orbit, de/dt is irrelevant but the change in semimajor axis is

〈
da

dt
〉 = −

64

5

G3µM2

c5a3
. (11)

Remembering that fGW = (1/π)(GM/a3)1/2, that means that

da/dt = −
2

3

(

GM

π2

)1/3

f−5/3(df/dt) = −(64/5)
G3µM2

c5a3
. (12)
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From this, we get

d ln f

dt
=

96

5

(

GM

π2

)−1/3 G2µM

c5
π2f 8/3 . (13)

The reciprocal of this gives the characteristic time Tinsp. Therefore,

fmin =

[

96

5

(

GM

π2

)−1/3 G2µM

c5
π2Tinsp

]−3/8

. (14)

For two white dwarfs of mass 0.6 M⊙, M = 1.2 M⊙ and µ = 0.3 M⊙. Inserting
Tinsp = 1010 yr ≈ 3 × 1017 s gives fmin ≈ 9 × 10−5 Hz.

2. Below fmin the distribution dN/df of sources with frequency will de-
pend on their birth population. Above it, gravitational radiation controls
the distribution. Derive the dependence of dN/df on f for f > fmin (the
normalization is not important).

Answer:

The number in a frequency bin between f and f + df (with df fixed) is just
proportional to the time spent in that bin. We found that d ln f/dt ∝ f 8/3,
meaning that df/dt ∝ f 11/3, so dt ∝ f−11/3df . Therefore, dN/df ∝ f−11/3.
Pretty steep dependence!

3. Suppose there are 109 WD-WD binaries at frequencies fmin < f < 0.1 Hz.
To within a factor of 2, compute the frequency fres above which you expect
an average of less than one WD-WD binary per df = 10−8 Hz frequency bin
(this is 1/(3 yr), or about the frequency resolution expected for the LISA
experiment). Very roughly speaking, above fres one can identify individual
WD-WD binaries, whereas below it is the confusion limit.

Answer:

If there are Ntot total binaries above some frequency fmin, then

∫

∞

fmin

Af−11/3df = Ntot , (15)

where A is a normalization constant we need to determine. Note that, strictly,
the integral would actually have an upper limit of 0.1 Hz instead of infinity,
but as the integral is dominated by the lower limit it is easier to go to ∞.
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Then A = (8/3)f
8/3

minNtot, and the number between f and f + df is N(f) =
Af−11/3df . Putting in fmin = 9× 10−5 Hz, Ntot = 109, and df = 10−8 Hz, we
solve for N(f) = 1 to find fres ≈ 3 × 10−3 Hz. By the way, it’s not as if no
bins above this frequency will have multiple WD-WD sources; plenty will, it
just gets rarer for higher frequencies.
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