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Abstract

Exponential distributions appear in a wide range of applications in-
cluding chemistry, nuclear physics, time series analyses, and stock market
trends. There are conceivable circumstances in which one would be in-
terested in the cumulative probability distribution of the sum of some
number of exponential variables, with potentially differing constants in
their exponents. In this article we present a pedagogical derivation of
the cumulative distribution, which reproduces the known formula from
power density analyses in the limit that all of the constants are equal,
and which assumes no prior knowledge of combinatorics except for some
of the properties of a class of symmetric polynomials in n variables (Schur
polynomials).

1 Introduction

In many circumstances, a system can be considered to have no “memory”, in
the sense that, for example, the expected amount of time to the next radioactive
decay, or chemical reaction, or failure of a machine part, does not depend on
how much time has already elapsed. The unique memoryless and continuous
probability distribution is the exponential distribution; if a variable P has an
expected value Pexp, then the normalized differential probability density is

prob(P ) =
1

Pexp
e−P/Pexp (1)

and the probability that P will be P0 or larger is

prob(P ≥ P0) = e−P0/Pexp . (2)

Alternatively, the exponential distribution is the solution to the differential
equation

dy

dP
= −y/Pexp . (3)

There may be occasions in which one wishes to compute the probability
distribution of the sum of several independently-sampled exponential variables,
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which could have different decay constants. The sum of the waiting times for a
decay from several different radioactive substances provides a perhaps artificial
example of this type.

Thus we are faced with the following problem: if we combine the statistically
independent measurements of a quantity P for n discrete variables, what is
the probability distribution of the sum of the values of those quantities given
that they are all exponentially distributed? Put another way, if the expected
constants for the n variables are P1,exp, P2,exp, . . . , Pn,exp, how probable is it in
that model that the sum of the measured values will be at least Ptot?

Motivated by this problem, we will proceed as follows. In Section 2 we obtain
by mathematical induction our general formula. This proof is completed by a
basic lemma of long standing, presented in Section 3, in which we use some
properties of Schur polynomials. In Section 4 we apply our formula to the case
where all powers are the same, and recover the correct result, which is known
in power density theory among other contexts. We present our final remarks in
Section 5.

2 The general formula

The probability that the sum of the values of n measurements drawn from
exponentials is greater than or equal to Ptot, is one minus the probability that
the sum is less than Ptot:

prob(P ≥ Ptot) = 1−
∫ Ptot

0
(1/P1,exp)e−P1/P1,exp

×
[∫ Ptot−P1

0
(1/P2,exp)e−P2/P2,exp

×
[∫ Ptot−P1−P2

0
(1/P3,exp)e−P3/P3,exp

× . . .×
[∫ Ptot−

∑n−1
i=1 Pi

0
(1/Pn,exp)e−Pn/Pn,expdPn

]
dPn−1

]
. . .

]
dP1 .

(4)
We claim that this expression evaluates to

prob(P ≥ Ptot) =

n∑
i=1

(
Pn−1i,expe

−Ptot/Pi,exp∏
j 6=i(Pi,exp − Pj,exp)

)
. (5)

We prove this by induction:
Step 1: For n = 1, the probability is

prob(P ≥ Ptot) = 1−
∫ Ptot

0
(1/P1,exp)e−P1/P1,expdP1

= 1− (1− e−Ptot/P1,exp) = e−Ptot/P1,exp .
(6)

This is consistent with eq. (5).
Step 2: Assume that the formula is true for a given n. For n+ 1, insertion
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of the formula along with some relabeling gives us

prob(P ≥ Ptot) = 1−
∫ Ptot

0

1

P1,exp
e−P1/P1,expdP1

[
1−

n+1∑
i=2

Pn−1i,expe
−(Ptot−P1)/Pi,exp∏

1<j 6=i(Pi,exp − Pj,exp)

]
.

(7)
Multiplying through, we obtain

1−

[∫ Ptot

0

1

P1,exp
e−P1/P1,expdP1 −

∫ Ptot

0

n+1∑
i=2

e−P1(1/P1,exp−1/Pi,exp)Pn−1i,expe
−Ptot/Pi,exp

P1,exp

∏
1<j 6=i(Pi,exp − Pj,exp)

dP1

]
.

(8)
The first integral just evaluates to 1− e−Ptot/P1,exp . For the second integral, we
note that the factor in the exponent multiplying −P1 is

1

P1,exp
− 1

Pi,exp
=
Pi,exp − P1,exp

P1,expPi,exp
(9)

and thus the second integral becomes

−
n+1∑
i=2

Pni,expe
−Ptot/Pi,exp

Pi,exp − P1,exp

1∏
1<j 6=i(Pi,exp − Pj,exp)

[
1− e−Ptot/P1,expePtot/Pi,exp

]
.

(10)
Subtracting the sum of the integrals from 1 gives

prob(P ≥ Ptot) =

n+1∑
i=2

Pni,expe
−Ptot/Pi,exp∏

j 6=i(Pi,exp − Pj,exp)
+e−Ptot/P1,exp

[
1−

n+1∑
i=2

Pni,exp∏
j 6=i(Pi,exp − Pj,exp)

]
.

(11)
The first term has the required form for i = 2 through i = n+ 1. We will prove
our formula if we can show that

1−
n+1∑
i=2

Pni,exp∏
j 6=i(Pi,exp − Pj,exp)

=
Pn1,exp∏

j 6=1(P1,exp − Pj,exp)
, (12)

which is to say that we can prove our formula if we can show that

n+1∑
i=1

Pni,exp∏
j 6=i(Pi,exp − Pj,exp)

= 1 . (13)

3 Statement and proof of the basic lemma

Now we proceed to prove eq. (13) in order to complete the proof by induction of
our general formula given in eq. (5). As this result will be used again in Section
4, we present it in this Section as a separate lemma (which, as we discuss,
already appeared in generalized form some centuries ago), which we state and
prove below using techniques that do not require advanced mathematics. We
give explicit examples with n = 1, 2 and 3 in Appendix A.
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Lemma 1 Let {xi}i∈N be a set of real positive numbers, n a given natural
number and {ai}i∈N be a real sequence given by

ai =
xni∏

j 6=i(xi − xj)
, with j = 1, . . . , i− 1, i + 1, . . . ,n + 1 . (14)

Then the sum Sn+1 =
∑n+1
i=1 ai = 1.

As we indicate above, generalizations of this formula have been applied to inter-
polation theory as early as [1], and there are significant connections to geometry
(in evaluating integrals over projection space and in the context of flag mani-
folds; for several papers that clarify these connections see [2, 3, 4, 5], and for a
more recent review see [6]). In addition, when one interprets the exponential as
a probability distribution, one can take advantage of the fact that the distribu-
tion of the sum of two probability densities is the convolution of the densities
(for an application in this context, see, e.g., [7]). Here, however, we present a
proof that relies on the properties of certain classes of symmetric polynomials.

Proof. Sn+1 is a symmetric polynomial in the xi (in fact, it is a Schur
polynomial as we will see below) because it can be written as An/Bn, where
both An and Bn are alternating polynomials of degree n in the xi’s and are
given by

An =

n+1∑
i=1

(−1)i+1xni
∏

j<k;j,k 6=i

(xj − xk) , (15)

Bn =
∏
j<k

(xj − xk) . (16)

All alternating polynomials can be written as the product Vn · s, where Vn is
the Vandermonde polynomial (i.e., the determinant of the Vandermonde matrix
[8]) and s is a symmetric polynomial. We recognize now that Bn = Vn, and
therefore Sn+1 is a symmetric polynomial given by the ratio of the alternating
polynomial An over the Vandermonde polynomial. Thus, Sn+1 is called a Schur
polynomial [9].

Therefore we can write An = Bn · s. As An and Bn are polynomials of the
same order, s must be a zeroth-order polynomial: s = C, with C = const. and
An = C ·Bn. To show that C = 1, we compare the coefficients of the xn1 terms in
An and Bn, as given by eqs. (15) and (16). For both An and Bn, the coefficient
of xn1 is ∏

1<j<k

(xj − xk) , (17)

which demonstrates that C = 1. Therefore, An = Bn and Sn+1 = An/Bn = 1.
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4 An application: Reduction of the general for-
mula in the case that all expected values are
nearly equal

Our general formula given by eq. (5) has, in its denominator, the products of
differences of expected values. If two or more of the Pi,exp approach each other,
then the formula appears singular. It is not, in fact, as the original integral
given in eq. (4) is clearly nonsingular. We will demonstrate this below, and we
give explicit examples for n = 2, 3 in Appendix B.

Let us assume that there are n total measurements, and that all of them
have expected values that are very close to each other. We will assume that
P2,exp = P1,exp + ε2, P3,exp = P1,exp + ε3, . . ., Pn,exp = P1,exp + εn, and take the
limit of the resulting expression as ε2 → 0, ε3 → 0, . . . , εm → 0:

lim
Pi,exp→P1,exp

prob(P ≥ Ptot) =

= lim
εi→0

(
Pn−11,expe

−Ptot/P1,exp∏
j>1(−1)n−1εj

+

n∑
i=2

(P1,exp + εi)
n−1e−Ptot/(P1,exp+εi)

εi
∏
j>1;j 6=i(εi − εj)

)
(18)

or

lim
εi→0

(
f(P1,exp)∏
j>1(−1)n−1εj

+

n∑
i=2

f(P1,exp + εi)

εi
∏
j>1;j 6=i(εi − εj)

)
, (19)

where we used the auxiliary function

f(P ) = Pn−1e−Ptot/P . (20)

We will calculate this limit by expanding f(P1,exp +εi) in a Taylor series around
P1,exp,

f(P1,exp + εi) =

∞∑
l=0

f (l)(P1,exp)

l!
εli , (21)

and substituting it in eq. (19). We can now collect the terms proportional to
f(P1,exp) and its l-derivatives.

For l = 0, we find the coefficient of f(P1,exp) and we can show that it is:

1∏
j>1(−1)n−1εj

+

n∑
i=2

1

εi
∏
j>1;j 6=i(εi − εj)

= 0 , (22)

where, similarly to our proof of Lemma 1, we can write the second term as∑n
i=2(−1)i

∏
j 6=i εj

∏
1<j<k;j,k 6=i(εj − εk)∏

i>1 εi
∏

1<j<k(εj − εk)
=

(−1)n∏
i>1 εi

, (23)

after the cancellation of the alternating polynomials of degree n− 2 in the εj ’s,
leading to the result in (22).
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For each l in the range 1 < l < n − 1, we find that the coefficient of the
l-derivative f (l)(P1,exp) is:

1

l!

n∑
i=2

εli∏
j 6=1 εi(εi − εj)

= 0 , (24)

because the sum can be written in the form∑n
i=2(−1)iεl−1i

∏
1<j<k;j,k 6=i(εj − εk)∏

1<j<k(εj − εk)
. (25)

From this we can see that the denominator is the Vandermonde determinant in
the variables εi (with i = 2, . . . , n) [8], whereas the numerator is zero, because
it is equal to the determinant of the modified Vandermonde matrix in which the
line εl−1i appears twice, where in the second occurrence it replaces the last line
εn−2i .

For l = n− 1, the coefficient of the l-derivative f (l)(P1,exp) is

1

(n− 1)!

n∑
i=2

ε
(n−1)
i∏

j 6=1 εi(εi − εj)
=

1

(n− 1)!
, (26)

where we can again use Lemma 1 to show that the sum equals 1.
For l > n− 1, all coefficients of the l-derivatives f (l)(P1,exp) go to zero when

we take the limit εi → 0, as these coefficients will have higher order polynomials
in εi in the numerator.

Thus, finally, we find that the desired result for the limit given in eq. (19) is
given by the only surviving term f (n−1)(P1,exp)/(n−1)! and, for the derivatives
of our f(P ) given by eq. (20) we prove in Appendix C that

f (n−1)(P1,exp) = (n− 1)! e−Ptot/P1,exp

n−1∑
i=0

(Ptot/P1,exp)i

i!
, (27)

so that we obtain

lim
Pi,exp→P1,exp

prob(P ≥ Ptot) = e−Ptot/P1,exp

n−1∑
i=0

(Ptot/P1,exp)i

i!
. (28)

This is the result known from, for example, time series analysis1 in the context of
an intrinsically steady source whose only power comes from Poisson fluctuations
(see [10] and the limit Ps → 0 of equation (16) from [11]).

1If we apply Leahy normalization, as is standard in astronomy, then Pexp = 2 and thus

the probability is e−Ptot/2
∑n−1

i=0
(Ptot/2)

i

i!
.
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5 Final Remarks

We have presented here an application of basic properties of Schur polynomials
(symmetric polynomials that can be written as the ratio between an alternat-
ing polynomial in the numerator and the Vandermonde polynomial in the de-
nominator) motivated by the statistical problem of determining the cumulative
distribution of the sum of exponentially-distributed variables. Our work led to
the result given in Lemma 1, for calculating the sums of Schur polynomials that
appeared in our analysis.

As an application of our analysis, we recovered the known expression for the
probability that the power density of an intrinsically constant source, summed
over some number of independent frequency bins, exceeds a given total. As part
of our calculation, we found an interesting direct expression for the (n − 1)th-
derivative of our auxiliary function f .
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A Examples of expressions using the basic lemma

Here we present some examples of application of Lemma 1 for different values
of n.

For n = 1:
x1

x1 − x2
+

x2
x2 − x1

=
x1 − x2
x1 − x2

= 1 . (29)

For n = 2:

x21
(x1 − x2)(x1 − x3)

+
x22

(x2 − x1)(x2 − x3)
+

x23
(x3 − x1)(x3 − x2)

=

=
x21(x2 − x3)− x22(x1 − x3) + x23(x1 − x2)

(x1 − x2)(x1 − x3)(x2 − x3)
= 1 . (30)

For n = 3:

x31
(x1 − x2)(x1 − x3)(x1 − x4)

+
x32

(x2 − x1)(x2 − x3)(x2 − x4)
+

+
x33

(x3 − x1)(x3 − x2)(x3 − x4)
+

x34
(x4 − x1)(x4 − x2)(x4 − x3)

=

=
x31(x2 − x3)(x2 − x4)(x3 − x4)− x32(x1 − x3)(x1 − x4)(x3 − x4)

(x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4)
+

+
x33(x1 − x2)(x1 − x4)(x2 − x4)− x34(x1 − x2)(x1 − x3)(x2 − x3)

(x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4)

= 1 . (31)

B Examples of the reduction of the general for-
mula

Here we present some examples of the reduction of the general formula (5) in
the case that all n power densities are equal, for different values of n.
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For n = 2 we have the simplest case

lim
P2,exp→P1,exp

(
P1,expe

−Ptot/P1,exp

P1,exp − P2,exp
+
P2,expe

−Ptot/P2,exp

P2,exp − P1,exp

)
=

= lim
ε2→0

(
P1,expe

−Ptot/P1,exp

−ε2
+

(P1,exp + ε2)e−Ptot/P1,exp

ε2

)
= lim

ε2→0

f(P1,exp + ε2)− f(P1,exp)

ε2

= f ′(P1,exp) = e−Ptot/P1,exp

(
1 +

Ptot

P1,exp

)
, (32)

where we used P2,exp = P1,exp + ε2 and f(P ) = Pe−Ptot/P .
For n = 3, we have

lim
P2,exp→P1,exp

P3,exp→P1,exp

(
P 2
1,expe

−Ptot/P1,exp

(P1,exp − P2,exp)(P1,exp − P3,exp)
+

+
P 2
2,expe

−Ptot/P2,exp

(P2,exp − P1,exp)(P2,exp − P3,exp)
+

P 2
3,expe

−Ptot/P2,exp

(P3,exp − P1,exp)(P3,exp − P2,exp)

)
=

= lim
ε2,ε3→0

(
P 2
1,expe

−Ptot/P1,exp

ε2ε3
+

(P1,exp + ε2)2e−Ptot/P1,exp

ε2(ε2 − ε3)
+

+
(P1,exp + ε3)2e−Ptot/P1,exp

ε3(ε3 − ε2)

)
(33)

where we use now f(P ) = P 2e−Ptot/P and expand it in a Taylor series around
P1,exp to write

lim
ε2,ε3→0

(
f(P1,exp)

ε2ε3
+
f(P1,exp) + ε2f

′(P1,exp) + (ε22/2)f ′′(P1,exp) +O(ε32)

ε2(ε2 − ε3)
+

+
f(P1,exp) + ε3f

′(P1,exp) + (ε23/2)f ′′(P1,exp) +O(ε33)

ε3(ε3 − ε2)

)
= lim

ε2,ε3→0

{
f(P1,exp)

[
1

ε2ε3
+

1

ε2(ε2 − ε3)
+

1

ε3(ε3 − ε2)

]
+

+f ′(P1,exp)

[
ε2

ε2(ε2 − ε3)
+

ε3
ε3(ε3 − ε2)

]
+

+
f ′′(P1,exp)

2

[
ε22

ε2(ε2 − ε3)
+

ε23
ε3(ε3 − ε2)

]
+O(ε2, ε3)

}
. (34)

Let us now analyze the first three terms in eq. (34) separately.
In the first term, a simple calculation shows that the term between brackets

is equal to zero. (The general argument for any value of n can be seen in Section
4.)
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The second term between brackets can also be shown to be zero with a
simple calculation, but here we give an explicit example of the argument given
in Section 4 by noting that it can be written as (1 − 1)/(ε2 − ε3) where the

denominator is the determinant of the 2 × 2 Vandermonde matrix,
ε2 ε3
1 1

,

while the numerator is the determinant of the modified matrix resulting with

one repeated line,
1 1
1 1

.

Lastly, we recognize that the third term between brackets has the same form
as eq. (29) and is therefore equal to one. So we finally have the only remaining
term

f ′′(P1,exp)

2
= e−Ptot/P1,exp

[
1 +

Ptot

P1,exp
+

1

2

(
Ptot

P1,exp

)2
]
. (35)

C The (n−1)th-derivative of the auxiliary func-
tion f(P )

Here we present a proof by induction of the general expression given in eq. (27)
for the (n− 1)-derivative of the function f(P ) given in eq. (20). For clarity we
will now index f(P ) by n as

fn(P ) = Pn−1e−Ptot/P . (36)

and the general expression for the (n − 1)-derivative of fn(P ) is reproduced
below

f (n−1)n (P ) = (n− 1)! e−Ptot/P
n−1∑
i=0

(Ptot/P )i

i!
. (37)

Let us first verify that this expression is true for n = 1 and n = 2.
For n = 1, the trivial case, the definition (36) gives f1(P ) = e−Ptot/P and

eq. (37) results again in f1(P ) = e−Ptot/P .
For n = 2, we have f2(P ) = Pe−Ptot/P and eq.(37) results in f ′2(P ) =

e−Ptot/P (1 + Ptot/P ).
Now let us assume that eq. (37) is true for given n and n− 1. For n+ 1, we

have fn+1(P ) = Pne−Ptot/P and we proceed to calculate

f
(n)
n+1(P ) =

dn

dPn
(fn+1) =

dn−1

dPn−1

(
d

dP
(fn+1)

)
=

dn−1

dPn−1

(
nPn−1e−Ptot/P + PtotP

n−2e−Ptot/P
)

= n
dn−1

dPn−1
(fn(P )) + Ptot

d

dP

(
dn−2

dPn−2
(fn−1(P ))

)
= nf (n−1)n (P ) + Ptot

d

dP

(
f
(n−2)
n−1 (P )

)
, (38)
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where the first term is given directly by eq. (37) and f
(n−2)
n−1 (P ) is given by

f
(n−2)
n−1 (P ) = (n− 2)! e−Ptot/P

n−2∑
i=0

(Ptot/P )i

i!
, (39)

for we are assuming that eq. (37) holds for n and n− 1. Now we calculate the

first derivative of f
(n−2)
n−1 (P ),

d

dP

(
f
(n−2)
n−1 (P )

)
= (n− 2)! e−Ptot/P

(
n−2∑
i=0

1

i!

P i+1
tot

P i+2
−
n−2∑
i=1

1

(i− 1)!

P itot
P i+1

)

= e−Ptot/P
Pn−1tot

Pn
, (40)

and, substituting (37) and (40) in (38) we obtain

f
(n)
n+1(P ) = n! e−Ptot/P

n−1∑
i=0

(Ptot/P )i

i!
+ e−Ptot/P

(
Ptot

P

)n
= n! e−Ptot/P

n∑
i=0

(Ptot/P )i

i!
, (41)

completing the demonstration.
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