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Abstract

The nature of the minute-to-hour long Fast X-ray Transients (FXTs) localised
by telescopes such as Chandra, Swift, and XMM-Newton remains mysterious,
with numerous models suggested for the events. Here, we report multi-wavelength
observations of EP240315a, a 1600 s long transient detected by the Einstein
Probe, showing it to have a redshift of z = 4.859. We measure a low col-
umn density of neutral hydrogen, indicating that the event is embedded in a
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low-density environment, further supported by direct detection of leaking ionis-
ing Lyman-continuum. The observed properties are consistent with EP240315a
being a long-duration γ-ray burst, and these observations support an interpreta-
tion in which a significant fraction of the FXT population are lower-luminosity
examples of similar events. Such transients are detectable at high redshifts by
the Einstein Probe and, in the (near) future, out to even larger distances by
SVOM, THESEUS, and Athena, providing samples of events into the epoch of
reionisation.

Keywords: High energy astrophysics:X-ray transient sources, High energy
astrophysics:Gamma-ray transient sources

1 Introduction

Studying the nature of short-timescale astrophysical transient events is a major
endeavour across the electromagnetic spectrum, from millisecond activity in fast radio
bursts (FRBs [1]) to the multiple sources that evolve on timescales of hours to days
in the optical sky [2, 3], to the high-energy gamma-ray bursts (GRBs) that have been
studied for more than half a century. Perhaps surprisingly, the origin of similar singular
outbursts that have been detected using instruments sensitive to soft X-ray photons
(≈ 0.3–10 keV) remains uncertain. These fast X-ray transients (FXTs) have been
known for almost as long as GRBs [e.g. 4, 5], however, it is only more recently that
better and occasionally rapid localizations have allowed some of them to be pinpointed
as securely extragalactic events [6, 7].

Intensive archival searches have now found > 30 FXTs in Chandra [7–12] and
XMM-Newton [13, 14] observations. These transients are characterized by durations
of hundreds to thousands of seconds [11–13] and power-law spectra. There have been
many suggestions for their origin, which include powering by rapid spin-down of a mil-
lisecond magnetar formed in a binary neutron star merger [15]; by the tidal disruption
(TDE) of a white dwarf by an intermediate-mass black hole [7, 16]; by a supernova
shock breakout [17]; or by cocoon-like emission from a jet breakout in long-GRBs [18].

The relationship of these FXTs to previously identified populations of high-energy
transients remains, however, unclear. In particular, while GRBs were identified based
on their E × FE spectral peak in the 100 keV – 1 MeV range (where FE is the
energy flux density and E the photon energy), missions with softer responses, such
as BeppoSAX and HETE-2, also uncovered GRB-like events with much lower peak
energies, often dubbed X-ray flashes (XRFs; [e.g. 19]). These have durations more
like those of classical GRBs, but spectra that peak at tens of keV, or sometimes
even < 10 keV. In at least two cases, the very long (2000 s) GRB/XRF 060218 [20]
and GRB/XRF 020903 [21] the detection of supernova signatures points to similar
progenitors for XRFs as for long-duration GRBs, although other events have strong
limits on supernova emission [22, 23]. However, the relation of these XRFs to the
longer-lived FXTs is less certain. In this regard, it is worth noting that the list of
models for GRB creation postulated before the identification of the first afterglows
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was very long (118 distinct models according to the list of [24]), so there is no shortage
of potential routes to the creation of high-energy emission. The question of whether
these scenarios manifest in nature, and at what rate, remains open.

The recent launch of the Einstein Probe (EP; [25, 26]) offers the opportunity to
make decisive inroads into these questions. In particular, its Wide-field X-ray Tele-
scope (WXT) has a soft X-ray response (0.5–4 keV), a wide field of view (3600 deg2)
and unprecedented sensitivity thanks to the use of focussing Lobster-eye optics. It
should enable the discovery of substantial populations of high-energy transients. The
expectation is that the soft response and detection via imaging, rather than scintilla-
tors or coded-mask detectors should enhance the detectability of GRBs (and related
phenomena) at high redshift where both time dilation and the redshift of the spec-
trum could favor X-ray detection methods. Discovery of distant transients would be of
significant importance because of their value as probes of the high-redshift Universe
[27]. In this regard, GRBs and related transients have several advantages over other
probes, even galaxies now identified at extreme redshifts by JWST. GRBs signal the
collapse of individual massive stars at very high redshift, potentially even providing
a route for the identification of first-generation stars. Moreover, because these GRBs
select galaxies based on a single star rather than the integrated light, they can sample
galaxies across the luminosity function, including those undetectable to current tech-
nology [28]. Finally, the afterglows themselves are bright backlights on which we view
the imprint of the interstellar and intergalactic medium. This enables, for example,
the reconstruction of detailed abundance patterns in high redshift galaxies [29], direct
measurements of the neutral fraction of the intergalactic medium during the epoch of
reionisation [30], and a powerful route to determine the fraction of photons that can
escape from these regions of massive stars to drive this reionisation [31, 32].

2 Results

EP 240315a was discovered by the EP WXT as a soft X-ray transient with 1600 s
duration [33]. Although no associated GRB was promptly reported, analysis of data
from both Swift-BAT and Konus-Wind showed a 50 s long GRB with a consistent sky
position which occurred ∼ 400 seconds after the onset of emission detected by EP [34,
35]. In general, GRBs show an evolution from hard to soft, and so both the difference in
X-ray and γ-duration and time of onset would appear, at first sight, unusual. However,
it should be noted that GRB follow-up is normally initiated by the γ-ray trigger
with X-ray observations occurring later. X-rays before the main γ-ray pulse have
not been well studied, although at least a few examples (GRB 011121, GRB 981226,
GRB 980519) exist in the sample of GRBs observed by BeppoSAX [36–38]. Overall,
the duration observed in γ-rays would mark EP 240315a as a normal long-GRB while
the 1600 s emission in the X-ray regime would imply an ultra-long GRB [39]. The field
covering EP 240315a was imaged by the ATLAS survey approximately one hour after
the outburst, and a bright new optical source, AT 2024eju, was uncovered in these
observations [40, 41].

We obtained spectroscopic observations with the GTC/OSIRIS+ and VLT/X-
shooter instruments beginning 27 and 29 hours after the burst [42, 43], respectively (1
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and 3 hours after the report of the counterpart). These spectra show a strong break at
∼ 7120 Å which can be interpreted as due to Ly-α absorption. The X-shooter obser-
vations reveal numerous high ionisation lines from metals including carbon, nitrogen,
oxygen and silicon, and from these, we infer a systemic redshift of z = 4.8585±0.0001
(see Figure 1 and Methods). Our spectroscopy provides good signal-to-noise from 7100
to 15,000 Å (1216–2600 Å in the rest frame). Over this range, the optical counterpart
light is reasonably described by a spectral slope of Fν ∝ ν−1.0, typical of GRB after-
glows. A second X-shooter spectrum was obtained on 31 March 2024. At this epoch,
the afterglow had faded substantially, but we recovered a Ly-α line from the host
galaxy in emission.

In addition to these spectroscopic observations, we also obtained optical and IR
photometric observations with the VLT, GTC, NOT, TNG and LBT, and X-ray obser-
vations with the Chandra X-ray Observatory (see Figure 3 and Methods). Combining
these with data from the literature (see Methods) the optical/IR counterpart decays
in the z-band as t−1.4±0.2 from the time of our first to last observations. The X-ray
observations favour a steeper slope, with the two Chandra epochs suggesting a decay
faster than t−2.1 (at 95% confidence). The late-time X-ray slope would appear to be
indicative of a GRB afterglow post-jet break as favoured by detailed afterglow mod-
elling (see [44]). The difference in X-ray and optical slopes may indicate a contribution
from an underlying host galaxy in our latest z-band data-point, although the late-time
detections are only marginal.

The combined spectral and temporal behaviour of the counterpart is consistent
with that seen for the afterglows of GRBs. In Figure 3 we compare the behaviour
of EP 240315a with the X-ray and optical/IR lightcurves of a sample of both high
redshift GRBs detected with Swift and with the population of ultra-long GRBs [39].
The properties of EP 240315a are consistent with these comparison events, although it
is notable that while the optical afterglow of EP 240315a is relatively bright compared
with this sample, it is comparatively fainter in the X-rays. Still, many GRBs (often
not those at the highest redshift) do lie in this region of parameter space. Furthermore,
the γ-ray energetics and the location of EP 240315a on the relations between prompt
spectral properties and energetics are also entirely consistent with those seen in GRBs
[34].

A striking feature of the spectroscopy is the very sharp break at Ly-α (Figure 1).
This is a combination of light from Ly-α in emission and a very low neutral hydrogen
gas column density along the line of sight. The lines of sight to many long-GRBs have
extremely high column densities of neutral hydrogen gas, exhibiting so-called damped
Lyman-α systems with log (NHi/cm−2) > 20.3 [45]. In fact, the median long-GRB
has log (NHi/cm−2) ∼ 21.5 [31]. In contrast, the afterglow of EP 240315a requires a
low log (NHi/cm−2) = 15.9 ± 0.3 for z = 4.8585, although a higher column density
is allowed if the absorber’s redshift is a free parameter (see Methods). Importantly,
this low column implies a non-negligible escape fraction of ionising photons. Lyman
continuum leakage is not unprecedented in long GRB lines of sight, but very rare [32].
At z ∼ 6 such ionizing photons are required to drive the transition of the intergalactic
medium from its neutral to ionised state. However, most studies to date suggest rather
low escape fractions from regions of star formation at this cosmic epoch, proving
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something of a challenge in obtaining the required photon budget. For EP 240315a the
inferred escape fraction may be close to unity (for log (NHi/cm−2) = 15.9). Indeed,
because of the relatively bright backlight provided by the counterpart, we can test for
this by examining the spectrum at rest-frame wavelengths < 912 Å (i.e. the Lyman
limit). We detect escaping ionizing photons in the regime 900–912 Å with a significance
of ∼ 4σ (see Figure 2 and Methods). This is the highest redshift at which such ionising
photons have been directly detected, although the interference of the dense Ly-α forest
precludes the robust calculation of the escape fraction from the leaking photons.

3 Discussion

EP 240315a appears very similar to the classical cosmological GRBs at comparable
redshift. Although it is striking that the EP trigger begins several minutes before the
γ-ray detections, in the absence of this trigger, the burst would have a typical GRB
duration, and similar energetics and would lie on the spectral correlations that hold for
long GRBs. A natural conclusion is that this FXT (and by extension a significant frac-
tion of other FXTs) are related to GRBs. Alternatively, if this is not true, and many
FXTs are related to other astrophysical phenomena, we should consider if our popu-
lations of GRBs are substantially contaminated by different progenitor populations,
and if missions such as EP could uncover new classes of high-energy explosions.

Firstly, we should consider the progenitor of EP 240315a itself. Although its γ-ray
duration is typical of GRBs, it lasts much longer at softer X-ray energies: 1600 s in the
0.5–4 keV band of the EP WXT. However, it does not have the very long duration at
high luminosity (LX > 1048 erg s−1) seen for the candidate relativistic tidal disruption
events [46, 47]. In particular, by the time of the first epoch of Chandra observations
at 3 days (0.5 days in the rest frame) the luminosity is LX ∼ 1046 erg s−1, two orders
of magnitude fainter than Swift J1644+57 at this time. The 1600 s duration would
(depending on the classification scheme) place it within the ultra-long GRB population
[39] which do appear to be related to stellar collapse in some cases [48]. However, the
γ-ray duration is much shorter.

If we identify EP 240315a as a typical, long-duration GRB then the progenitor
would be expected to be a massive star. The presence of Ly-α in emission in the host
galaxy suggests that such a young population of stars is present. However, there is good
recent evidence which suggests that long-GRBs arise not only from collapsars but also
from the merger of compact objects. This is based, in particular on the detection of
kilonova signatures in the long duration GRB 211211A [49, 50] and GRB 230307A [51,
52]. The appeal of such a progenitor in the case of EP 240315a would lie in explaining
the very low hydrogen column density. In particular, if a progenitor is kicked from
its birth site then it may ultimately merge away from the dense dust and gas around
the massive stars, presenting a lower hydrogen column density and a higher escape
fraction. Thus, the detection of Lyman leakage would be more readily explained at
z ∼ 5 with a merger than with a massive star. Similar constraints may also favour the
tidal disruptions of white dwarfs by intermediate-mass black holes, which could take
place in (proto)-globular clusters and be relatively gas-free. However, the expected
rates of such disruptions are typically even lower than the rates of compact object

8



mergers [53, 54]. While these arguments could favour an alternative (non-massive star)
progenitor it is important to remember that to reionise the Universe there should be
sufficient lines of sight to massive stars with low escape fractions to allow their ionising
photons to reach the intergalactic medium. We could, therefore, be observing such a
fortuitous line of sight. In principle, the detection of supernova emission could confirm
the progenitor, although this would require JWST observations. In the absence of a
supernova, the location relative to the host galaxy could be diagnostic. At present
our limits on host galaxy emission are weak, at 16 days post-burst, VLT observations
provide a magnitude z = 25.44±0.45 (AB) for the combination of afterglow and host,
implying Mhost,z > −20.97. The source location is astrometrically consistent with the
afterglow position. However, host detection and offset measurements are within the
realm of future observations. At the current time, aside from noting its observational
similarity with long-GRBs, we cannot, with the data available, make strong statements
about the progenitor of EP 204315a. However, we also note that using GRBs as probes
of the escape fraction at high redshift will ultimately rely on making robust inferences
of progenitors, at least on a statistical level.

Given our conclusion that EP 240315a is a normal GRB, it is therefore relevant
to consider if many of the observed FXTs could be related to the GRB phenomena.
At first sight, there appears to be little in common between the bright GRBs at
z ∼ 5 and the much fainter FXTs. The GRBs have durations of seconds to minutes,
are detected predominantly at energies > 10–100 keV and have peak luminosities
of > 1052 erg s−1. The FXTs have durations of minutes to hours, are not detected
outside of the soft X-ray regime (probably due to a large delay between the FXT
onset and their discoveries) and in the cases where likely redshifts have been measured
have luminosities of LX ∼ 1046–1047 erg s−1. However, there are good reasons to
believe these populations could be related. A more thorough discussion is provided in
the Methods, however, in summary: Current detectors are biased towards GRBs with
high peak fluxes, while longer-lived bursts with a lower peak flux, but the same total
fluence, are more difficult to detect. Indeed, the luminosity function of GRBs rises
steeply to fainter sources [55] so in the narrow, pencil beam surveys undertaken by
Chandra and XMM-Newton we would expect to locate the fainter examples at high
redshift where the cosmological volume is maximized. We expect these low luminosity
examples to be spectrally soft. While it is not certain that the two populations are
related, the presence of a substantial population of on-axis, GRB-like events within
the FXT population is entirely plausible (see Figure 6).

Regardless of its progenitor, EP 240315a points to a new route to identify high-
energy transients in the distant Universe. The use of wide-field soft X-ray detectors has
long been suggested as a route to enhancing the detectability of high-z GRBs thanks
to cosmological redshifting that moves the peak energy of the bursts closer to the X-
ray range. EP 240315a appears to confirm this promise. Although it is only a single
event, as the first object with a redshift from EP it has a markedly higher redshift
than the median redshifts of Swift GRBs (z̄ ∼ 2; [56]). EP and similar technologies
such as those used in the ESA M7 candidate THESEUS [57] should reveal tens of
GRBs beyond z ∼ 6. If the progenitors of these systems are clear, and in particular
if they are massive stars then they offer powerful new routes to probing both the
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production (e.g. via host galaxies) and absorption of ionizing radiation well into the
epoch of reionization.

Interestingly, narrower field-of-view instruments can also play an important role.
Chandra has a three-order of magnitude greater sensitivity than the EP WXT, and
Athena would be a further factor of ∼ 30 more sensitive. This substantially offsets
the factor of ∼ 8000 between the field of view of the EP WXT and the Athena Wide
Field Imager. The Athena WFI can perform a volume-limited survey for sources with
LX ∼ 1046 erg s−1 out to z > 15 should a burst occur at such a redshift, and scaling
from the Chandra population allowing for the factor ∼ 4 in field of view and factor
30 in sensitivity should give a rate of detection of FXTs for Athena that is two orders
of magnitude larger than for Chandra (although it should be noted that the Chandra
population has been accrued over 20+ years). Critically, it will also provide precise
positions for follow-up with extremely large telescopes. A time domain survey with
Athena could be a powerful complementary route to discovering the collapse of stars
very early in the Universe.
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4 Methods

Below we describe our observations of EP 240315a with a range of facilities, and also
outline in more detail the consistency of the FXT population with low luminosity
GRB-like events. Throughout we use the Planck 2018 cosmology [60], magnitudes are
given in the AB system and errors at the 1σ level unless otherwise stated.

4.1 Observations

EP 240315a was discovered using the Einstein Probe [EP; 25, 26] with the first photons
detected at 20:10 UT on 15 March 2024 [61], and announced via the general coordinates
network (GCN) approximately 20 hours later. The outburst had a duration of ≈ 1600 s
as measured by the Wide Field X-ray telescope (WXT) onboard EP. The average flux
during this period was FX = (5.3+1.0

−0.7) × 10−10 erg s−1 cm−2 in the 0.5–4 keV band.
For a duration of 1600 s, this implies a fluence of S0.5–4 keV ∼ 8.5 × 10−7 erg cm−2.

Although there were no coincident γ-ray triggers reported, a search in data from
both the Swift Burst Alert Telescope, and the Konus-Wind instrument revealed a clear
γ-ray signal which began ∼ 400 s after the onset of activity observed by EP, and lasted
for only ∼ 50 s [34, 35]. The total burst fluence was S20 keV–10 MeV = (1.63+0.64

−0.40)×10−5

erg cm−2.
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Fig. 1 Optical and IR spectroscopy of EP 240315a:. The figure shows GTC/OSIRIS+ and
VLT/X-shooter spectroscopy of EP240315a obtained 27 and 29 hours after the transient onset,
respectively. The strong flux break due to Ly-α is visible at 7120 Å. For comparison we over-plot the
composite GRB afterglow spectrum of [58], where we have rescaled the normalised spectrum to have
an underlying spectral slope of Fν ∝ ν−1.0. The lower panel shows a zoom-in of the region around
Ly-α, with the spectrum plotted as the result of the subtraction of our second epoch from the first
to remove Ly-α in emission (note this only impacts the spectral shape at Ly-α. In addition, we show
two fits to the data, one in which the redshift of the neutral hydrogen absorber is fixed to the redshift
measured from the metal lines. This requires a very low log(NHi/cm

−2) = 15.9 ± 0.3. We also plot
a model in which the redshift is allowed to vary, in this case we find a solution with a slightly lower
redshift and a higher column density of log(NHi/cm

−2) = 18.4 ± 0.3. The conservative assumption
is that we should observe hydrogen and metals at the same location, and the low density and high
escape fraction is consistent with the identification of leaking photons blueward of the Lyman limit.
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Fig. 2 Lyman continuum leakage from EP240315a: The smoothed 2-dimensional X-shooter
spectrum of EP 240315a in the region around the Lyman limit (vertical dotted white line at 912 Å
rest frame). Brighter emission can be seen in the forest, but there is a 4σ detection of flux from the
counterpart blueward of this, consistent with leakage of ionising flux from the host galaxy.

Serendipitous observations with the ATLAS telescopes 1.1 hours after the onset of
the outburst [40], discovered a new transient AT 2024eju, with a cyan filter magnitude
of 19.37 ± 0.14. The probability of uncovering an unrelated bright transient in the
small (3 arcminute radius, 90% containment) error box is low, making this source the
prime candidate to be the counterpart of EP 240315a. This identification was confirmed
with the detection of the X-ray afterglow by the EP follow-up X-ray Telescope [62],
the optical spectroscopy and X-ray observations described below, and the discovery of
a radio counterpart [63].

4.1.1 VLT spectroscopy and photometry

We obtained observations of EP 240315a with the ESO VLT and X-shooter [64]
instrument under programme 110.24CF (PIs Malesani, Tanvir, Vergani), beginning at
01:02:52 UT on 17 March 2024, as soon as the source became visible from Chile. This
was 29 hr after the EP source detection, 9 hr after it was reported to the GCN and 3 hr
after the ATLAS detection was reported. A faint source was visible in the r-band acqui-
sition image, and we obtained spectroscopy of the source with 4× 1200 s exposures in
the three different arms of X-shooter, covering the wavelength range 3 000− 21 000 Å.
The K-blocking filter was used to improve the signal-to-noise ratio in the J and H
regions of the spectrum. The observations were executed in the ABBA nod-on-slit
mode. We adopted the standard X-shooter STARE mode reduction pipeline [65, 66]
for the UVB, VIS and NIR arms. Then, flux-calibrated spectra for each exposure were
adjusted for slit-loss in each arm, with residual sky features subtracted. The individual
spectra were then combined into a final science spectrum using the methods outlined
in [67], with the extraction window (1.6′′) positioned and centered accurately at the
location of the trace. Additionally, a telluric correction was applied to the final stacked
spectra. All wavelenghts were corrected to the vacuum-heliocentric system. The spec-
trum is shown in Figure 1, the redshift from quick-look analysis was initially reported
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Fig. 3 A comparison of the X-ray and optical/IR properties of EP 240315a with a sample
of high redshift and ultra-long duration GRBs. Left: A comparison of the optical afterglow
of EP240315a with several high-redshift GRBs. The afterglow is plotted in the z band with the
exception of the first point which is corrected from the ATLAS c band (see [40, 41]) via a colour term
derived by folding the X-shooter spectrum through the c-band response. The afterglow of EP240315a
is a bright, but typical high-redshift afterglow. Right: The location of EP 240315a in the X-ray flux
space, compared to Swift-GRBs, high-z bursts, ultra-long GRBs and relativistic TDEs. While the
observations of EP 240315a extend to later times and fainter fluxes than many Swift observations
they lie in the same regime as normal long and ultra-long GRBs, and the long duration (> 1000 s)
above the EP WXT limit would be observed for many Swift events.

in [68]. The spectrum shows a strong, sharp break at 7120 Å, which we identify as the
Ly-α break at z = 4.859 refined by several absorption features due to Nv λ1238Å,
λ1242Å, Si iv λ1393Å, λ1402Å and Civ λ1548Å, λ1550Å. Nv and Si iv show a sin-
gle strong component while C iv has a larger velocity structure towards the blue (see
Figure 4). We fit the identified absorption lines with the Astrocook software [69], a
Python code environment to analyze spectra modelled with Voigt profiles, depending
on the system redshift z, its column density N , and its Doppler broadening b. The
column densities we determined are reported in Table 2.

Other absorption lines from multiple intervening systems along the line of sight
have been identified. A strong Mg ii foreground systems at z = 2.3050 (VIS arm) and
a C iv system at z = 3.6243 are present. Furthermore two other systems are detected
at z = 1.9078 (Mg ii and Fe ii) and z = 2.5695 (Fe ii).

Aside from the narrow spectral features the continuum is reasonably described by
a power-law with Fν ∝ νβ with β = −1.0. This is typical of the continuum slopes seen
in GRB afterglows.

The break at Ly-α is particularly sharp, suggesting a rather low column density
of H i. However, it also contains a narrow feature just redward of the Ly-α which
suggests a likely contribution from Ly-α in emission in the host galaxy. To remove this
contribution we obtained a second epoch of X-shooter observations on 31 March 2024
with an identical set-up (slit position, orientation) to the first epoch. This observation
reveals a clear detection of Ly-α in emission (see Figure 5). The line has a flux of
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Time since FXT Telescope/instrument Band Exposure time Magnitude
(days) (number × s) (AB)
1.086 GTC/OSIRIS+ r 6×120 21.74 ± 0.06
1.104 GTC/OSIRIS+ i 1×150 21.14 ± 0.04
1.195 VLT/X-shooter r 4×60 22.68 ± 0.05
1.198 VLT/X-shooter g 3×60 >25.0
1.201 VLT/X-shooter z 3×60 21.06 ± 0.06
2.015 TNG/NICS H 42×60 21.15 ± 0.20
2.041 GTC/HiPERCAM g 80×30 > 25.3
2.041 GTC/HiPERCAM i 80×30 22.32 ± 0.03
2.041 GTC/HiPERCAM r 80×30 23.99 ± 0.08
2.041 GTC/HiPERCAM z 80×30 22.05 ± 0.03
3.097 GTC/EMIR Ks 672×3 21.09 ± 0.10
3.139 GTC/EMIR J 192×10 21.87 ± 0.15
3.194 NOT/ALFOSC z 27×300 22.23 ± 0.11
4.045 GTC/EMIR Ks 672×3 21.47 ± 0.12
4.052 TNG/NICS H 50×60 21.56 ± 0.19
4.304 LBT/LUCI J 30×63 22.49 ± 0.08
6.414 LBT/LUCI H 48×63 23.29 ± 0.22
7.233 VLT/FORS2 z 32×120 23.92 ± 0.11
16.067 GTC/OSIRIS+ z 45×60 24.55 ± 0.41
16.183 VLT/FORS2 z 22×120 25.44 ± 0.45

Table 1 Our optical and IR photometry of EP 240315a from various ground-based telescopes. See
[59] for the HiPERCAM filters.

Absorption lines log(N/cm−2)

Civλ1548, λ1550† > 16.7
Nvλ1238, λ1242 14.6 ± 0.2
Siivλ1393, λ1402 14.4 ± 0.2

Table 2 Column densities of high ionization absorption lines identified in the EP240315a
X-shooter spectrum. They are derived by using a Doppler parameter b = 21± 2 km s−1, obtained
from the simultaneous fit of Nv and Si iv single component. †The C iv doublet with a different,
highly saturated velocity structure shows at least one additional absorption component.

F = 3.2 × 10−18 erg cm−2 s−1, and a narrow width of 1.4 Å (60 km s−1). The
measured redshift of the line is z = 4.8619 ± 0.0003. This suggests that the blue wing
is substantially absorbed, and so the actual flux of Ly-α is significantly suppressed
by the neutral column, which thus only provides a lower limit on the star formation
rate in the host galaxy. This rate is calculated to be SFR > 0.43 M⊙ yr−1 using the
conversion of [70]. We note that Ly-α emission originates from the galaxy, and the
line of sight is not the same as to the GRB itself. Ly-α could exhibit both higher or
lower column densities than the GRB itself, and is best removed from the spectrum
prior to NHi fitting.
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Fig. 4 VLT/X-shooter optical spectrum of EP240315a at redshift z = 4.859. All the panels of
the high-ionization absorption lines are in velocity space and the zero-velocity has been fixed to
z = 4.8585, corresponding to the single Nv and Si iv transitions. Absorption lines have been fitted
with Voigt profiles using the Astrocook software.

Fig. 5 The Lyman-α emission line in the second epoch of X-shooter spectroscopy. The line wave-
length of 7126.17 Å corresponds to a redshift of z = 4.8619. This likely reflects the bluer emission
being absorbed by neutral gas in the host galaxy, however, since the emitting gas may not be at pre-
cisely the same velocity (or same location) as the gas observed in absorption, the precise systemic
redshift is also uncertain. The detection implies a star formation rate in the host galaxy > 0.75 M⊙
yr−1.

Do determine the hydrogen column density on the subtracted spectrum, we model
the Ly-α absorption edge using the Voigt-profile fitting code VoigtFit [71]. This takes
the input spectra and estimates the best-fit column density, N , broadening param-
eter, b, and absorption redshift, zabs via a χ2 minimization approach of the created
absorption-line model convolved with the spectral resolution of the data. Fixing the

16



redshift of the Ly-α absorption to that inferred from the more narrow metal lines,
z = 4.8585, yields log (NHi/cm−2) = 15.9 ± 0.3. Leaving the redshift of Ly-α as a free
parameter yields a substantially higher column density, log (NHi/cm−2) = 18.4 ± 0.3,
mostly due to the preferred lower redshift solution at z = 4.8573, blueshifted by
≈ 75 km s−1 to the main metal line velocity component. Since the low-ion metal
content is expected to be mostly embedded in the neutral hydrogen gas, the low-
column-density solution is likely the most appropriate, and would be consistent with
the detection of leaking ionising radiation.

A striking feature of the first epoch spectroscopy is that inspection of the UVB
arm of X-shooter reveals emission from the transient at wavelengths < 912 Å in the
rest frame (see Figure 2). The emission is visible in the range 905–910 Å in the rest
frame. To estimate its significance we use an unbinned, non-smoothed stare reduction
of the UVB data, and utilize an aperture 10 Å long and 3 pixels high and compare the
measured flux in this aperture to the mean and standard deviation of 20 equally sized
apertures placed at locations within ∼ 100 Å of Ly-α but offset from the position
of the trace. These results suggest that the leakage is significant at the > 6σ level.
Although the precise significance depends on the choice of central wavelength and
aperture size, the overall significance is robust. In the second epoch observations, in
which the slit location was identical, we do not observe any sign of emission at this
location indicating that any light is arising from the afterglow, and not, for example,
from any lower redshift intervening systems.

In addition to our spectroscopy, we also obtained photometric measurements,
first with the X-shooter acquisition camera coincident with our first epoch of spec-
troscopy in the grz filters. We then obtained two further epochs of z-band imaging
using FORS2 on 23 March and 31 March 2024. FORS2 observations were reduced
through the standard ESO pipelines while X-shooter acquisition cameras images were
manually corrected for bias and flat-fields. Observations were calibrated against the
Pan-STARRS catalogues and results are given in Table 1.

4.1.2 Gran Telescopio Canarias (GTC) spectroscopy and
photometry

We obtained observations of EP 240315a with the OSIRIS+ instrument mounted on
the GranTelescopioCanarias (GTC) under programme GTC1-ITP23 (PIs Jonker, Tor-
res), beginning at 22:55:26 UT on 16 March 2024, about 1 hr after the ATLAS
detection of an optical counterpart was reported. Three observations of 1200 s each
were obtained using the R1000R volume-phased holographic grating. A slit of 1′′

width was used. The slit was oriented at the parallactic angle. The data were cor-
rected for bias and flatfield effects and extracted using tasks in iraf. Cosmic rays
were removed using lacosmic [72]. Wavelength calibration was done using daytime
arc-lamp observations using molly1. Flux calibration was done using observations of
the spectrophotometric standard star Hiltner 600 taken through a wide slit (2.52′′) on
the same night at UT 21:54:58 at similar airmass as the observations of EP 240315a.

Photometric observations in the optical were obtained with the GTC using either
OSIRIS+ or the HiPERCAM instrument (see Table 1). In addition, GTC near-infrared

1We thank Tom Marsh for the use of ’molly’.
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(NIR) observations were obtained on two nights using the EMIR instrument on 18
March (J and Ks bands) and 19 March 2024 (only Ks). The EMIR images were
reduced using scripts based on python and IRAF [73]. All individual frames are first
corrected for readout background in each individual column using overscan infor-
mation. Flat fields are then created for each observing band and used to correct
the scientific data. Flat-corrected science frames are used to create sky background
images. The background-only images are normalised to the median flux of each sci-
ence image and subtracted from it. Finally, these images are aligned and combined to
produce the final frame. The world coordinate system information is obtained using
astrometry.net codes [74].

4.1.3 Nordic Optical Telescope (NOT)

A z-band observation was secured using the Nordic Optical Telescope (NOT) at the
Roque de los Muchachos observatory (Canary Islands, Spain), using the ALFOSC
camera. A standard dithering pattern was used for the observations, and a standard
reduction technique was adopted to create the output frame. Photometric calibration
was computed by comparison with nearby stars from the Pan-STARRS catalog, with
no need to correct for color terms.

4.1.4 Telescopio Nazionale Galileo (TNG)

We performed NIR observations of EP 240315a using the Near Infrared Camera Spec-
trometer (NICS) camera in imaging mode on the 3.58 m Telescopio Nazionale Galileo
(TNG, Canary Islands, Spain) under the long term observation program A47TAC 42
(PI: A. Melandri). The observation was conducted in two epochs, which started on
2024-3-17 20:10:27 UT (2.0 d after trigger) and on 2024-3-19 20:50:09 UT (4.0 d after
trigger), respectively. Hour-long observations in H band were carried out in both
epochs. The image reduction was performed using the jitter task of the ESO-eclipse
package2. The photometric measurements using aperture and point-spread function
(PSF)-matched photometry were performed using the DAOPHOT package within IRAF.
Magnitudes were calibrated with the nearby reference stars in the field of view listed
in the Two Micron All Sky Survey (2MASS) catalogue3.

4.1.5 Large Binocular Telescope (LBT)

We observed the NIR counterpart of EP 240315a with the Large Binocular Tele-
scope (Mount Graham, Arizona) and the LBT Utility Camera in the Infrared [LUCI,
75] imager and spectrograph, under program IT-2023B-020 (PI Maiorano). J-band
imaging data were obtained on 2024-03-20 at a mid-time 03:30:00 UT, 4.3 d after
the EP detection, followed by H-band observations at mid-time 2024-03-22T05:20:00,
7.4 d after the trigger. These data were reduced using the data reduction pipeline
developed at INAF - Osservatorio Astronomico di Roma [76] which includes bias sub-
traction and flat-fielding, bad pixel and cosmic ray masking, astrometric calibration,
and coaddition.

2https://www.eso.org/sci/software/eclipse/
3https://irsa.ipac.caltech.edu/Missions/2mass.html
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4.1.6 Chandra X-ray Observatory

We further obtained observations with the Chandra X-ray Observatory (DDT pro-
gramme ID 23495, PI Levan). Two epochs of observations were obtained starting at
19:53 on 18 March 2024 for 9.95 ks and at 04:34 on 26 March 2024 for 18.53 ks. The
source was placed at the default location on the ACIS-S3 chip for both observations.

Data were processed using ciao v4.16. Background-subtracted spectra were
obtained with the specextract script and grouped as 1 count per bin with the grp-
pha routine from NASA’s High Energy Astrophysics Software [HEASoft; 77] package.
Spectral fitting was performed in xspec v12.11.1, using an absorbed power-law model
(tbabs * po) with Galactic absorption fixed to NH = 4.44 × 1020 atoms cm−2 [78],
abundances from Wilms et al. [79], and Cash statistics [80]. For the first epoch, the
best fit (cstat/dof = 26.4/28) has a photon index of Γ = 2.0 ± 0.5 and an unabsorbed
0.3–10 keV flux of (8.7 ± 0.7) × 10−14 erg s−1 cm−2 as measured with cflux (these
error bars are at the 67% confidence level). At the time of the second epoch we only
detect a single photon at the source localisation. Using the method of [81] and the
measured photon background in the images we obtain a 1σ range of 0.1–2.2 counts, or
a 3σ upper limit of 7.8 counts. Assuming the same spectrum as observed in the first
epoch, this corresponds to a measured flux of (1.4+1.7

−1.3) × 10−15 erg s−1 cm−2.

4.2 FXT and GRB properties

At z = 4.859 the isotropic energy release in the 20 keV – 10 MeV range is Eiso,γ =
7.1× 1053 erg, making the source a relatively energetic GRB. The comparable energy
in the X-ray regime (0.5 – 4 keV, observer frame) is Eiso,X = 2.2 × 1053 erg, approxi-
mately a factor of three lower. Although most high-energy transients detected by Swift
and Fermi today are given GRB designations there has previously been a broader
classification regime including GRBs, X-ray rich GRBs (XRRs) and X-ray flashes
(XRFs) [82]. The distinction between GRBs, XRRs and XRFs was typically drawn at
log(SX(2–30 keV)/Sγ(30–400 keV)) > −0.5 [e.g. 19, 83], with the bands largely chosen
to be convenient for comparing event fluences detected by the BeppoSAX WFC and
HETE-2. Although we do not have the full spectral information to make these com-
parisons it seems likely that EP 240315a does belong to the X-ray rich class of bursts
via these diagnostics, despite the relatively high peak energy of Ep = 459+304

−155 keV,
although we also note that the rather different time intervals considered by Konus-
Wind and EP may skew these results. A full analysis of the EP and γ-ray data could
reveal important diagnostics for the GRB prompt emission.

To put the high-energy emission in the context of Swift GRBs, we retrieved from
the Swift Burst Analyser [84] the BAT+XRT light curves of > 480 GRBs with detected
X-ray afterglows and known spectroscopic redshifts. We also downloaded the data
products of the high-redshift GRBs 090423, 090429B and 100905A that have only a
photometric redshift. In addition, we acquired the X-ray light curves of the relativistic
TDEs SwJ1112-82 [85] from the Burst Analyser, SwJ1644+57 [47, 86–88] from [89],
SwJ2058+05 [90] from [91], and AT 2022cmc [92, 93] from [93]. All BAT data products
were built using methods from T. Sakamoto and S. D. Barthelmy (NASA/GSFC) and
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the XRT data with methods from [94, 95]. The density plot was generated using the
methods outlined in [96].

The multi-wavelength properties of EP 240315a appear to be entirely consistent
with those of the GRB population. In particular, the spectral slope from optical/IR
photometry β = 1.2 ± 0.3 and the X-ray spectral slope of β = 1.3 ± 0.4 are consistent
with each other, although given the large error are also consistent with the cooling
break lying between the two bands. However, the overall X-ray to optical spectral
slope βOX = 0.9 at 3 days post transient, which suggests that the X-ray and optical
lie on the same branch of the synchrotron spectrum. The optical decay is also entirely
consistent with that observed for long GRBs, as is the optical/IR and X-ray luminosity.

4.3 The link between FXTs and GRBs

In the main text, we argue that a significant fraction of the FXTs observed previously
by Chandra and XMM-Newton could be low luminosity GRBs typically observed at
high redshift (essentially the low luminosity representations of EP 240315a). This does
not mean that the lower-luminosity events must arise from this channel, since the
lower photon energies may enable the identification of new or different phenomena.
However, we describe below why additional channels (beyond low luminosity GRBs)
are not required to explain the observed populations of FXTs with Chandra and
XMM-Newton.

A striking feature of the FXTs, and indeed EP 240315a is that they have markedly
both longer durations than the GRB populations observed by GRB missions such as
Swift and Fermi (T90 is typically ∼ 1000–10000 s for FXTs compared to 1–100 s for
GRBs), and lower peak luminosities, likely in the L ∼ 1044 − 1047 erg s−1 range,
although robust redshifts are unavailable for many events. However, these may be
selection effects. Firstly, as shown in Figure 6, the EP WXT is substantially more
sensitive than the Swift BAT for most spectral shapes, and Chandra and XMM-
Newton are more sensitive still. Many normal GRBs detected by the EP WXT will
be observable by it for several thousand seconds.

Secondly, most GRB detections to date have been based on rate triggers which
favour the identification of high peak fluxes. In principle, the physical mechanisms that
create GRBs (e.g. accretion or magnetar spin-down) are more constrained by the total
available energy, rather than the instantaneous flux. Bursts with very long duration
but low peak flux are more difficult to detect, and within the Swift population there
is a strong correlation between duration and fluence, such that very long events can
only be detected if they have a very high total fluence, as demonstrated in Figure 6.
Indeed, the ultra-long GRB population observed by Swift may be under-represented
by more than an order of magnitude compared to the true population at the same
integrated fluence [39]. This means that ultra-long GRBs are the hard-to-detect tail
end of the long-GRB duration distribution [97]. Indeed, the analysis of [97] implies
that central engine activity for several thousand seconds is quite common, but that
most GRB detectors have higher recovery fractions for bursts with high-peak flux at
some point during their outburst.
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The combination of these two effects may naturally create much larger populations
of FXTs with durations of thousands of seconds than one would expect by simply
extrapolating from the duration distribution of GRBs.

The differing luminosities of most GRBs and Chandra/XMM-Newton population
of FXTs can be explained because the latter are found in sensitive narrow field instru-
ments that survey small volumes to extreme depths. The redshift rate evolution of
GRBs detected by Swift and Fermi is well constrained at brighter luminosities, but
despite their far higher source densities, the low-luminosity population is relatively
sparsely sampled, and, inevitably is only directly constrained in the local Universe.
[98] describe the rate evolution of GRBs across cosmic time (0.1 < z < 10), finding a
rapid increase in rate as (1+z)3.2 out to z ∼ 3, followed by a comparably rapid decay.
This rate density peaks at a higher redshift than the cosmic star formation history,
likely because of the metallicity bias in GRB production [99, 100]. Their population
model predicts rate densities for bursts with LX > 1047 erg s−1. While detection
with Chandra and XMM-Newton is based predominantly on fluence, and not peak
flux, the typical peak flux limits used in FXT searches of FX ∼ 10−13 erg s−1 cm−2

[11, 12] imply that these surveys are close to volume-limited for the population of
events modeled by [98] out to z ∼ 10.

If we are close to the volume-limited scenario, then the actual number of events
recovered in these narrow field surveys is strongly dependent on the behavior of the
faint end of the luminosity function. In particular, the GRB luminosity function at
the faint end typically has a slope in the range of −1 to −1.5 [55], although it is
observationally undefined at the faintest levels. [55] provide the rate evolution over
the L ∼ 1047 − 1052 erg s−1 regime. If this were to continue to 1044 erg s−1 the
rate increase would be a factor of 1.5–30 (for slopes of −1 to −1.5, indicating sub-
stantial uncertainty due to the unknown slope at these luminosties). Ultimately, an
extrapolation of the luminosity function to lower luminosities must decline to avoid
over-production of GRB events, for example, in comparison to type Ib/c supernovae,
but its extrapolation to the typical peak luminosities seen in FXTs would provide
rates (accounting for beaming) of ∼ 103−104 Gpc−3 yr−1 at z ∼ 3, entirely consistent
with the uncertain volumetric rates of FXTs observed to date [11, 12], and substan-
tially lower than the supernova rate. Because of the volume-limited nature of these
surveys, we expect a high-redshift population, with a median of z ∼ 3. In Figure 7,
we plot the expected evolution in the rate density for different plausible assumptions
including constant rate density, one which follows both the global star formation rate
or the low metallicity Z < 0.3Z⊙ and the GRB population model of [98], including an
extrapolation to lower luminosity. We also convert these into the expected redshift dis-
tributions for volume-limited surveys by assuming that the number of events observed
at a given redshift shell is simply N = VcR/(1 + z), where Vc is the comoving volume
in the shell and R is the rate density. This demonstrates both the consistency of rates
(with substantial uncertainty) and the expectation of a predominantly high redshift
population in narrow-deep observations (see Figure 7). Given the difficulty in locating
GRB host galaxies at z > 3, [101, 102], and the typical faintness of the low-luminosity
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GRB afterglows, the lack of multi-wavelength counterparts and the sparsity of high-
confidence host galaxies to many FXTs would be naturally expected in this scenario
[e.g. 103, 104].

Since these FXTs are typically faint it will not, in general, be possible to place strin-
gent constraints on the ratio of X-ray to γ-ray fluxes (see Figure 6, which demonstrates
that all lie well below the Swift trigger thresholds), and the correlations between spec-
tral peak and isotropic energy and luminosity would imply that these low luminosity
events have spectral peaks in the X-ray regime. Hence, we conclude that a substantial
fraction of the observed extragalactic FXTs can originate in GRB-like events. In this
regard, one can view the FXTs observed by Chandra and XMM-Newton as the longer
duration tail of the population of XRFs observed by BeppoSAX and WFC, where the
differences in duration are largely explained by the selection effects described above.

We note that this is an economical explanation in that it does not require additional
progenitor channels beyond those already recognised in the GRB population, and the
presence of even lower luminosity GRBs than observed is likely. However, it also does
not directly identify any given FXT with a progenitor. Furthermore, it is also plausible
that soft X-ray detection, rather than γ-ray detection, preferentially selects progenitor
channels that are until now under-represented in GRB samples.
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31

https://doi.org/10.1007/s10686-021-09807-8
https://arxiv.org/abs/2104.09531
https://doi.org/10.1088/0004-637X/727/2/73
https://doi.org/10.1088/0004-637X/727/2/73
https://arxiv.org/abs/1011.0734
https://doi.org/10.1093/mnras/stab2130
https://arxiv.org/abs/2107.10124


E., Matarrese, S., Mauri, N., McEwen, J.D., Meinhold, P.R., Melchiorri, A.,
Mennella, A., Migliaccio, M., Millea, M., Mitra, S., Miville-Deschênes, M.-A.,
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Fig. 6 The prompt emission properties of Swift GRBs, Chandra FXTs [11, 12], and EP 240315a.
The lower panel shows the duration versus the total fluence for Swift GRBs demonstrating the strong
relationship between T90 and total fluence. In particular for very long events, only the highest-fluence
(and intrinsically rarest) bursts can be found, providing a bias against typical GRB fluence distributed
over longer duration. Furthermore for Swift, and also other satellites in low Earth orbit, the time
frame over which the integration can occur is limited, with the typical Swift observation time marked
with the vertical dashed line. The central panel shows the one second peak flux versus duration.
Since most triggers are based on the peak flux, this shows little variation with T90 as expected.
Unsurprisingly given the nature of the detections none of the Chandra FXTs fall in the regime where
we would have expected detections with Swift, even if it had been looking at the location. We note
that bursts are plotted in their native discovery bands (15–150 keV for Swift and 0.3–10 keV for
Chandra), but corrections between the two are at most a factor of a few, and not important on this
plot. The upper panel shows the ratio of peak flux to fluence versus duration, with the dashed line
indicating no evolution for T90 < 1 s and inverse proportionality afterwards (e.g. for bursts with a
given total fluence the peak flux is inversely proportional to the duration). This is unsurprising since
for longer lived bursts most energy arises from outside of the main 1s peak. However, interestingly
the Chandra FXTs as well as EP240315a all lie well within the expected bounds of this relationship.
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Fig. 7 Comparison of GRB and FXT rates. The top panel shows the rate evolution, with the solid
blue shows the GRB population model of [98], with the orange indicating its extension to 1044 erg
s−1 with slopes between −1 and −1.5. The solid green box is the rates of FXTs inferred by [11]. We
note that there are no beaming corrections applied to the GRB rates, so the observed rates are lower
by the beaming factor. However, most models predict that the beaming correlates with the energy
[98], so we expect lower beaming corrections for low-luminosity GRBs. There are very substantial
uncertainties in the rates of all transient types at low luminosity, but low-luminosity GRBs and FXTs
are entirely consistent within these. The lower panel shows the expected redshift distribution for
a volume-limited survey of events (i.e. assuming all events are recoverable). In this case, we would
expect ∼ 50% of events at z > 3, which would explain the difficulties in locating secure host galaxies
in many cases.
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