
Part C : Quantum Physics

1 Particle-wave duality

1.1 The Bohr model for the atom

We begin our discussion of quantum physics by discussing an early idea for atomic structure,
the Bohr model. While this relies on a rather arbitrary assumptions (as we shall see), it
does demonstrate the power of the idea of quantization and was the first model of the atom
that was truly predictive.

In the model model, the atom consists of a massive nucleus with charge +Ze surrounded
by much lighter electrons (charge −e) that are in circular orbits. We proceed using classical
Newtonian arguments. The equation of motion for the orbiting electron is

mev
2

r
=

Ze2

4πǫ0r2
, (1)

which tells us that the angular momentum of the electron is

L ≡ mevr =

√

Ze2mer

4πǫ0
. (2)

The energy of the electron is

E =
1

2
mev

2 −
Ze2

4πǫ0r
, (3)

which, using the equation of motion, can be written in terms of just r:

E = −
Ze2

8πǫ0r
(4)

Bohr stated that, whenever electrons move one orbit to another, the change in energy
is released (or absorbed) as a packet of e/m radiation with frequency proportional to the
change in energy (in modern language, we would say that a photon is emitted or absorbed).
But we know that atoms have well-defined emission and absorption lines, so it seems as if
only very particular energy jumps are allowed. Why?

Bohr asserted that the angular momentum of the electron is quantized,

L = nh̄, (5)
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where h̄ is the reduced Planck constant (h/2π) and n = 1, 2, 3... Let us follow this sugges-
tion through to its conclusion. Inserting equation 2 into equation 5, we deduce that only
particular values of r are allowed,

rn =
4πǫ0h̄

2

Ze2me
n2. (6)

This in turn means that only particular energy levels are allowed,

En = −
Z2e4me

32π2ǫ20h̄
2

1

n2
(7)

Suppose that an electron jumps from a level with n = n1 to n = n2. The change in energy
is

∆En1→n2
= En2

− En1
=

Z2e4me

32π2ǫ20h̄
2

(

1

n2
1

−
1

n2
2

)

(8)

If n2 < n1, then the electron loses energy (it falls deeper into the electrostatic potential)
and a photon is emitted (emission line). If n1 < n2, the electron gains energy and it
must have absorbed a photon (absorption line). The wavelengths of the corresponding
emission/absorption lines are at

λ =
hc

|∆En1→n2
|
. (9)

1.2 Matter waves and particle-wave duality

In 1923, de Broglie built upon Einstein’s ideas of photons to make a radical proposal —
that matter particles have wave-like properties, and that the corresponding wavelength is
related to the particles momentum by λ = h/p. Vectorially, we have p = h̄k where k is the
wavenumber vector. This idea was verified by the detection of electron diffraction in 1927.

We can now understand the Bohr angular momentum quantization in terms of de Broglie
waves. Consider an electron in an atom, orbiting the nucleus at radius r. In order to “fit”,
the wavelength of the electron must be an integer number of multiples of the circumference
of the orbit, i.e.

2πr = nλ. (10)

But, since λ = h/p, this formula can be easily re-arranged to give

rp = hh̄, (11)

and we recognize the left-hand side of this as just the angular momentum L.

2 Degeneracy pressure and compact stars

Quantum physics is crucial for an understanding of white dwarfs and neutron stars. The
material in these stars is rather hot and so all atoms are fully ionized. Thus we must
examine the dynamics of “free particles”. This brings us to the classic discussion of...
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2.1 A particle in a box

Consider a particles in a cubic box of side length L. Suppose that the walls of the box
are impenetrable. The particle is described by a 3-d wave that needs to fit inside the box.
Thus, we need:

nx
λx

2
= L, (12)

ny
λy

2
= L, (13)

nz
λz

2
= L, (14)

(15)

where nx, ny, nz are positive integers. Using de Broglie’s formula, this gives a quantization
of the particle’s momentum components

px = nx
h

2L
, (16)

py = ny
h

2L
, (17)

pz = nz
h

2L
, (18)

and hence a quantization of the energy,

E =
p2

2m
=

h2

8mL2
(n2

x + n2

y + n + z2) (non− relativistic) (19)

E = cp =
ch

2L
(n2

x + n2

y + n + z2)1/2 (ultra− relativistic). (20)

Some notes:

1. For any finite L, the allowed energy levels are quantized.

2. As L → ∞, the energy levels get closer together and (sort of) approach a continuum.

3. There is a minimum, non-zero, allowed energy!

4. The “state” of the particle can be labeled by the three “quantum numbers”; nx, ny, nz.

2.2 Fermions, Bosons and Pauli exclusion

There are two basic types of particles in nature called Bosons and Fermions.
Bosons (e.g. photons, gravitons, gluons) have spin angular momenta that are integer

multiples of h̄. For example, a photon has a spin of h̄; a graviton has a spin of 2h̄. There
is no restriction on the number of bosons that can be in a given quantum state... indeed,
bosons like being in the same quantum state!

Fermions (e.g., electrons, quarks, protons, neutrons) have spins that are half-integer
multiples of h̄. For examples, our familiar particles (electrons, protons, neutrons) all have
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spin 1

2
h̄. A given measurement of the spin will find it in one of two states, “up” (S = 1

2
h̄)

or “down” (S = −1

2
h̄). No more than one fermion can occupy a given quantum state

(including the spin as one of the quantum numbers) — this is the Pauli exclusion principle.

2.3 Degenerate matter and the Fermi-energy

Suppose that we have N spin-1/2 fermions (e.g. electrons) in a box and that they are
free and non-interacting. They must, however, obey the Pauli exclusion principle. So,
we can have at most 2 electrons in the (nx, ny, nz) = (1, 1, 1) state, 2 electrons in the
(nx, ny, nz) = (1, 1, 2) state, 2 electrons in the (nx, ny, nz) = (1, 2, 1) state etc. etc.

If the system is very cold, the electrons will all attempt to occupy the lowest possible
energy levels but, of course, they are now allowed to all occupy the lowest energy level. They
will “stack up” in order of increasing E, which means in order of increasing (n2

x+n2

y+n2

z)
1/2.

In other words, they will stack up into a spherical ball in n-space and hence p − space.
The maximum momentum achieved (i.e. the momentum of this outer “shell” in momentum
space) is

pF = h̄(3π2ne)
1/3, (21)

where ne is the number density of the electrons. This is known as the Fermi-momentum.
The corresponding energy,

EF =
p2F
2me

=
h̄2

2me
(3π2ne)

2/3 (non-relativistic particles) (22)

EF = pF c = h̄c(3π2ne)
1/3 (relativistic particles), (23)

is known as the Fermi-energy.

2.4 Degeneracy Pressure

The Pauli exclusion principle means that the distribution function of cold degenerate matter
is particularly simple,

fp(p) = A, constant for |p| < pF (24)

fp(p) = 0 otherwise. (25)

where fp(p) dpx dpy dpz is the probability of finding an electron in state with momentum in
range px → px + dpx, py → py + dpy, pz → pz + dpz. We determine A by the normalization
condition:

∫

fp(p) d
3p = 1 ⇒ A =

2

π3h̄3ne

(26)

. From the distribution function, we can now calculate the pressure using our machinery of
statistical mechanics. Assuming a non-relativistic relation between velocity and momentum
(vx = px/me), this goes as:

P =
∫ ∫ ∫

nef(v)mev
2

x dvx dvy dvz (27)
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=
ne

m

∫ ∫ ∫

p2xfp(p) dpx dpy dpz (28)

=
(3π2)2/3h̄2

5me
n5/3
e (29)
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