

Generalized Friedmann Equation in
terms of Q's
• The generalized Friedmann equation governing
evolution of
$$R(t)$$
 is written in terms of the
present Q's (density parameter terms) as:
 $\hat{R}^2 = \left(\frac{dR}{dt}\right)^2 = H^2 R^2 = H_0^2 R_0^2 \left[\Omega_M \left(\frac{R_0}{R}\right) + \Omega_A \left(\frac{R}{R_0}\right)^2 + \Omega_k\right]$
• The only terms in this equation that vary with time are
the scale factor *R* and its rate of change *dR/dt*
• Once the constants H_0 , Ω_M , Ω_A , Ω_k are measured
empirically (using observations), then whole future of
the Universe is determined by solving this equation!
• Solutions, however, are more complicated than when
 $\Lambda = 0$
10/22/18

