Lecture 8 :
 Special Theory of Relativity

+ The speed of light problem
+ Einstein's postulates
+ Time dilation

Electromagnetic waves

+ James Clerk Maxwell (1831-1879)
+ Developed theory of electromagnetic fields in the 1860's (Maxwell's equations).

$$
\begin{aligned}
& \nabla \cdot \mathbf{B}=0 \\
& \nabla \cdot \mathbf{E}=\rho \\
& \nabla \times \mathbf{E}=-\partial \mathbf{B} / \partial t \\
& \nabla \times \mathbf{B}=4 \pi \mathbf{J} / c+(1 / c) \partial \mathbf{E} / \partial t
\end{aligned}
$$

+Maxwell's equations:

+ Predict "waves" of electromagnetic energy quickly realized that these were light waves!
+ The speed of light "c" appears as a fundamental constant in the equations.
$+\mathrm{c}=299,792,458 \mathrm{~km} / \mathrm{s}$
+ BUT, what frame of reference is this measured relative to???

Michelson-Morley Experiment

- Light leaves source, and is partly reflected $45^{\circ} /$ partly transmitted at half-glazed mirror
- Light returning from both paths is collected at detector
-Path length of light along either "arm" of apparatus is the same
-If one arm is along Earth's motion through ether, and the other arm is perpendicular to motion through ether, then light travel time was expected to be shorter for perpendicular arm

9/23/10

Michelson-Morley results

+ Travel time difference would be measured using interference fringes of light from two paths
Apparatus could be rotated to make sure no effects from set-up
+ Repeated at different times of year, when Earth's motion differs; Earth's speed around the Sun is $\sim 30 \mathrm{~km} / \mathrm{s}$
+ Experiment performed in 1887
+ Results
+ M-M showed that speed of light was same in any direction to within $5 \mathrm{~km} / \mathrm{s}$
+ Modern versions of the experiment show constancy to better than 1 micron/s
+ So, what's going on??

Attempts to deal with M-M results

+ Maybe the ether "sticks" to the Earth?
+ Gets "dragged" as Earth spins and orbits Sun...
+ Possibility at the time, but no-longer viable.
+ Maybe the ether squeezes the arms of the M-M experiment and distorts the result? "Fitzgerald contraction" (1889)?
+ A contraction (in the direction parallel to motion through ether) would change the light travel time to compensate for the difference expected due to different speed of light

$$
L=L_{0} \sqrt{1-V^{2} / c^{2}}
$$

+ Major mystery ("crisis") in 19th century physics - two highly successful theories seemed incompatible!
+ Mechanics - Galilean Relativity and Newton's laws
+ Electromagnetism - Maxwell's equations

II: Einstein's Postulates of Special Relativity

Abert Einstein

+ Didn't like idea of Aether
+ Threw away the idea of Galilean Relativity
+ Came up with the two "Postulates of Relativity"
+ Postulate 1 - The laws of nature are the same in all inertial frames of reference
+ Postulate 2 - The speed of light in a vacuum is the same in all inertial frames of reference.

Now change the point of view...

+ For ground-based observer, clock on spaceship takes longer to "tick" than it would if it were on the ground
- But, suppose there's an astronaut in the spacecraft
+ the inside of the spacecraft is also an inertial frame of reference - Einstein's postulates apply...
+ So, the astronaut will measure a "tick" that lasts

$$
\Delta \mathrm{T}=\frac{\mathrm{D}}{\mathrm{c}}
$$

+ This is just the same time as the "ground" observers measured for the clock their own rest frame
+ So, different observers see the clock going at different speeds!

So time is not absolute!!

It depends on your point of view...

Time dilation

+ This effect called Time Dilation.

+ Clock always ticks most rapidly when measured by observer in its own rest frame
+ Clock slows (ticks take longer) from perspective of other observers
+ When clock is moving at V with respect to an observer, ticks are longer by a factor of

$$
\Delta t \div \Delta T=\frac{D / c}{\sqrt{1-\mathrm{V}^{2} / c^{2}}} \div \frac{D}{c}=\frac{1}{\sqrt{1-\mathrm{V}^{2} / \mathrm{c}^{2}}}
$$

+ This slowing factor is called the Lorentz
$\underset{9 / 23 / 10}{\text { factor, } \gamma} \quad \gamma=\frac{1}{\sqrt{1-\mathrm{v}^{2} / \mathrm{c}^{2}}}$

Clocks and time

+ Does this "time dilation" effect come about because we used a funny clock?
+ No, any device that measures time would give the same effect!
+ The time interval of an event as measured in its own rest frame is called the proper time
+ Note that if the astronaut observed the same "light clock" (or any clock) that was at rest on Earth, it would appear to run slow by the same factor γ, because the dilation factor depends on relative speed
+ This is called the principle of reciprocity

Lorentz factor

A 1\% effect at $\mathrm{v}=0.14 \mathrm{c}$, or about
42,000,000 m/s

Lorentz factor goes to infinity when $\mathrm{V} \rightarrow \mathrm{c}$!
But it is very close to 1 for V/c small

Why don't we ordinarily notice time dilation?

Some examples of speeds in m/s

$+0.0055 \mathrm{~m} / \mathrm{s}$ world record speed of the fastest snail in the Congham,UK
$+0.080 \mathrm{~m} / \mathrm{s}$ the top speed of a sloth $(=8.0 \mathrm{~cm} / \mathrm{s})$
$+1 \mathrm{~m} / \mathrm{s}$ a typical human walking speed
$+28 \mathrm{~m} / \mathrm{s}$ a car travelling at 60 miles per hour (mi / h or mph) or 100
kilometres per hour (km / h); also the speed a cheetah can maintain
$+341 \mathrm{~m} / \mathrm{s}$ the current land speed record, which was was set by ThrustSSC in 1997.
$+343 \mathrm{~m} / \mathrm{s}$ the approximate speed of sound under standard conditions, which varies according to air temperature
$+464 \mathrm{~m} / \mathrm{s}$ Earth's rotation at the equator.

+ $559 \mathrm{~m} / \mathrm{s}$ the average speed of Concorde's record Atlantic crossing (1996)
+ $1000 \mathrm{~m} / \mathrm{s}$ the speed of a typical rifle bullet
$+1400 \mathrm{~m} / \mathrm{s}$ the speed of the Space Shuttle when the solid rocket boosters separate.
$+8000 \mathrm{~m} / \mathrm{s}$ the speed of the Space Shuttle just before it enters orbit.
+ 11,082 m/s High speed record for manned vehicle, set by Apollo 10
$+29,800 \mathrm{~m} / \mathrm{s}$ Speed of the Earth in orbit around the Sun (about $30 \mathrm{~km} / \mathrm{s}$)
$+29 / 23 / 10,792,458 \mathrm{~m} / \mathrm{s}$ the speed of light (about $300,000 \mathrm{~km} / \mathrm{s}$)
9/23/10

Examples of time dilation

+ [We work through some of the examples on the white board during the class]
+ The Muon Experiment
+ Muons are created in upper atmosphere from cosmic ray hits
+ Typical muon travel speeds are $0.99995 \times c$, giving $\gamma=100$
+ Half-life of muons in their own rest frame (measured in lab) is $t_{h}=2$ microseconds $=0.000002 \mathrm{~s}$
+ Traveling at $0.99995 \times \mathrm{c}$ for $\mathrm{t}_{\mathrm{h}}=0.000002 \mathrm{~s}$, the muons would go only 600 m
+ But traveling for $\gamma \times \mathrm{t}_{\mathrm{h}}=0.0002 \mathrm{~s}$, the muons can go 60 km
+ They easily reach the Earth's surface, and are detected!
+ Half-life can be measured by comparing muon flux on a mountain and at sea level; result agrees with $\gamma \times \mathrm{t}_{\mathrm{h}}$
9/23/10

