
Class 5. Data Representation and Introduction to Vi-

sualization

Visualization

• Visualization is useful for:

1. Data entry (initial conditions).

2. Code debugging and performance analysis.

3. Interpretation and display of results.

• Our focus will be #3. The computational astrophysicist can either:

1. Develop new visualization software tailored to problem under study.

2. Use an existing software package.

Plotting 1-D data

• Function of one variable only: f(x) vs. x.

• Examples: sm, gnuplot, xgobi, IDL, etc.

• Minimum requirements:

– Read data from file.

– Perform arithmetic manipulation of data.

– Multiple data sets on plot.

– Multiple plots on page.

– Add text to plots.

Plotting 2-D data

• Function of 2 variables, i.e. f(x, y).

• If f is a scalar quantity, can:

1. Make image.

– Represent each (x, y) data point by one or more pixels on screen.

– Use integer value to represent data value at (x, y) point (8 bit: 0–255; 24-bit:
0–16.8 million).

2. Make contour plot.

– Contours are isosurfaces of data.

3. Make 3-D surface plot.

– Use (x, y) as 2 coordinates, f as third coordinate, plot surface.

1

• If f is a vector quantity, i.e. f(x, y), can:

1. Plot vectors directly (as arrows).

– Can be hard to see.

2. Plot streamlines.

– Contours of Φ, where f = ∇Φ.

• 2-D plotting packages include sm, gnuplot, xgobi, IDL, ximage, NCAR graphics, etc.

Plotting 3-D data

• Function of 3 variables, i.e. f(x, y, z).

• If f is a scalar quantity, can:

1. Plot 2-D slices.

– E.g. faces of cube.

2. Plot isosurfaces.

– These are now 3-D surfaces. Can use wireframe of polygons. Can shade with
second variable g(x, y, z).

3. Plot volumetric rendering.

– Solve transfer equation (“ray tracing”) using emissivity proportional to data
value.

• Standard algorithms exist for 3-D rendering, including shadowing, hidden surface re-
moval, etc. Often implemented in hardware. Also have “dynamic/interactive” visual-
ization: rotation, etc.

• If f is a vector quantity, i.e. f(x, y, z), can:

1. Plot 3-D vectors on 2-D slice.

2. Plot streamlines in 3-D.

• 3-D plotting packages include tipsy, xgobi, IDL, NCAR graphics, xdataslice, etc.

Animation

• If any one of the coordinates of data in a plot is time, it makes sense to render images
as a time sequence, e.g. make animation.

• The eye is very sensitive to motion, can discover much detail using animations.

• Animation formats include MPEG, FLI, QT, AVI, GIF, plus many custom formats.

• Animation players include mpeg play, xanim, quicktime, gifview, etc.

– Often built into web browsers.

2

Data Representation

• Computers store data as different variable types, e.g. integer, floating point, complex,
etc.

• Different machines have different wordlengths, e.g. 4-byte ints on a 32-bit machine
(Pentium), 8-byte ints on a 64-bit machine (G5).

• This makes (binary) data non-portable.

Integers

• All data types represented by 0’s and 1’s.

• An integer value:

j =
N

∑

i=1

si × 2N−i

– N = # of bits in word.

– si = value of bit i in binary string s.

• E.g., 0 0 0 0 0 1 1 0 = 22 + 21 = 6 for 8-bit word.

• Use “two’s complement” method for sign (see below).

• Largest value that can be represented is 2N − 1.

• For 32-bit word this is 4,294,967,295.

• Arithmetic with integers is exact, except:

– when division results in remainder, or

– result exceeds largest representable integer.

E.g. 2 × 109 + 3 × 109 = overflow error.

• Note multiplication (division) by 2’s can be achieved by left-shift (right-shift), which
is very fast (in C, use the << (>>) operator).

Two’s complement

• Exploits finite size of data representations (cyclic groups) and properties of binary
arithmetic.

• To get negative of binary integer, invert all bits and add 1 to the result.

E.g., 1 = 0 0 0 0 0 0 0 1 in 8-bit.
invert bits: 1 1 1 1 1 1 1 0
add 1: 0 0 0 0 0 0 0 1
result: 1 1 1 1 1 1 1 1 = −1

• In 8 bits, signed char ranges from −128 to +127.

3

Negative powers of 2

• Binary notation can be extended to cover negative powers of 2, e.g. “110.101” is:

1 × 22 + 1 × 21 + 1 × 2−1 + 1 × 2−3 = 6.625.

• Can represent real numbers by specifying some location in the word as the “binary
point” (“fixed-point representation”).

• In practice, use some bits for an exponent (“floating-point representation”).

Floats

• For most machines these days, real numbers are represented by floating-point format:

x = s × M × Be−E

s = sign B = base (usually 2, sometimes 16)
M = mantissa e = exponent
E = bias, usually 127.

• In past, manufacturers used different number of bits for each of M and e, resulting in
non-portable code.

• Currently, most manufacturers adopt IEEE standard:

– s = first bit.

– Next 8 bits are e. (e = 255 reserved for inf & NaN.)

– Last 23 bits are M , expressed as a binary fraction, either 1.F, or, if e = 0, 0.F (in
which case E = 126), where F is in base 2.

E.g., 0 10000001 10100000000000000000000 = (+1)
[

2(129−127)
]

(1+0.5+0.125) = 6.5.

• Largest single-precision float fmax = 2127×(1+1/2+1/4+· · ·+1/223) ≈ 3.4028235×1038

(just under 2128).

• Smallest (and least precise!) fmin = 2−149 ≈ 10−45.

Round-off error

• Not all values along real axis can be represented.

• There are 1038 integers between fmin and fmax, but only 232 ≈ 109 bit patterns.

4

• Values < |10−45| result in “underflow” error.

• If value cannot be represented, next nearest value is produced. Difference between
desired and actual value is called “round-off error” (RE).

• Smallest value em for which 1 + em > 1 is called “machine accuracy,” typically 2−23 ∼
10−7 for 32 bits.

• Double precision greatly reduces em (∼ 10−16). (In this case the 64 bits are divided
into 1 sign bit, 11 exponent bits, and 52 mantissa bits; the bias is 1023.)

• RE accumulates in a calculation:

– Random walk: total error
√

Nem after N operations.

– But algorithms rarely random, giving linear error Nem.

• Subtraction of two very nearly equal numbers can give rise to large RE.

E.g., solution of quadratic equation...

x =
−b ±

√
b2 − 4ac

2a

...can go badly wrong whenever ac � b2 (Cf. PS#2).

• RE cannot be avoided—it is a consequence of using a finite number of bits to represent
real values.

Truncation error

• In practice, most numerical algorithms approximate desired solution with a finite num-
ber of artithmetic operations, e.g.,

– evaluating integral by quadrature;

– summing series using finite number of terms.

• Difference between true solution and numerical approximation to solution is called
“truncation error” (TE).

• TE exists even on “perfect” machine with no RE.

• TE is under programmer’s control; much effort goes into reducing it.

• Usually RE and TE do not interact.

• Sometimes TE can amplify RE until it swamps calculation. The solution is then called
unstable.

E.g., integer powers of Golden Mean (Cf. PS#2).

5

