Class 6. Numerical Linear Algebra, Part 1

- Probably the simplest kind of problem.
- Occurs in many contexts, often as part of larger problem.
- Symbolic manipulation packages can do linear algebra analytically (e.g., Mathematica, Maple, etc.).
- Numerical methods needed when:
- Number of equations very large.
- One or more coefficients numerical.

Linear Systems

- Write linear system as:

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
\vdots & =\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

- This system has n unknowns and m equations.
- If $n=m$, system is closed.
- If $m \leq n$ and any equation is a linear combination of any others, equations are degenerate and system is singular.

Numerical Constraints

- Numerical methods have their own problems when:

1. Equations are degenerate "within round-off error."
2. Accumulated round-off errors swamp solution (magnitudes of a 's and x 's vary wildly).

- For $n, m<50$, single precision usually OK (but why bother?).
- For $n, m<200$, double precision usually OK.
- For $200<n, m<$ few thousand, solutions possible only for sparse systems (lots of a 's zero).

Matrix Form

- Write system in matrix form:

$$
\mathbf{A x}=\mathbf{b}
$$

where:

$$
\mathbf{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

Matrix Data Representation

- Recall, C stores data in row-major form:
$a_{11}, a_{12}, \ldots, a_{1 n} ; a_{21}, a_{22}, \ldots, a_{2 n} ; \ldots ; a_{m 1}, a_{m 2}, \ldots, a_{m n}$.
- If using "pointer to array of pointers to rows" scheme in C, can reference entire rows by first index, e.g., $3^{\text {rd }}$ row $=\mathrm{a}[2]$.
(!) Recall in C array indices start at zero!
- FORTRAN stores data in column-major form:
$a_{11}, a_{21}, \ldots, a_{m 1} ; a_{12}, a_{22}, \ldots, a_{m 2} ; \ldots ; a_{1 n}, a_{2 n}, \ldots, a_{m n}$.

Note on Numerical Recipes in C

- The canned routines in NRiC make use of special functions defined in nrutil.c (header nrutil.h).
- In particular, arrays and matrices are allocated dynamically with indices starting at 1 , not 0 .
- If you want to interface with the NRiC routines, but prefer the normal C array index convention, pass arrays by subtracting 1 from the pointer address (i.e., pass $p-1$ instead of p) and pass matrices by using the functions convert_matrix() and free_convert_matrix() in nrutil.c (see NRiC $\S 1.2$ for more information).

Tasks of Linear Algebra

- We will consider the following tasks:

1. Solve $\mathbf{A x}=\mathbf{b}$, given \mathbf{A} and \mathbf{b}.
2. Solve $\mathbf{A} \mathbf{x}_{i}=\mathbf{b}_{i}$ for multiple \mathbf{b}_{i} 's.
3. Calculate \mathbf{A}^{-1}, where $\mathbf{A}^{-1} \mathbf{A}=\mathbf{1}$, the identity matrix.
4. Calculate the determinant of $\mathbf{A}, \operatorname{det}(\mathbf{A})$.

- Large packages of routines available for these tasks, e.g., LINPACK, LAPACK, GSL (public domain), IMSL, NAG libraries (commercial).
- We will look at methods assuming $n=m$.

The Augmented Matrix

- The equation $\mathbf{A x}=\mathbf{b}$ can be generalized to a form better suited to efficient manipulation:

$$
(\mathbf{A} \mid \mathbf{b})=\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & b_{n}
\end{array}\right) .
$$

- The system can be solved by performing operations on the augmented matrix.
- The \mathbf{x}_{i} 's are placeholders that can be omitted until the end of the computation.

Elementary row operations

- The following row operations can be performed on an augmented matrix without changing the solution of the underlying system of equations:

1. Interchange two rows.
2. Multiply a row by a nonzero real number.
3. Add a multiple of one row to another row.

- The idea is to apply these operations in sequence until the system of equations is trivially solved.

The generalized matrix equation

- Consider the generalized linear matrix equation:

$$
\underbrace{\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right)}_{\text {coefficients }} \underbrace{\left(\begin{array}{l|l|l|llll}
x_{11} & x_{12} & x_{13} & y_{11} & y_{12} & y_{13} & y_{14} \\
x_{21} & x_{22} & x_{23} & y_{21} & y_{22} & y_{23} & y_{24} \\
x_{31} & x_{32} & x_{33} & y_{31} & y_{32} & y_{33} & y_{34} \\
x_{41} & x_{42} & x_{43} & y_{41} & y_{42} & y_{43} & y_{44}
\end{array}\right)}_{\text {solutions and inverse }}=\underbrace{\left(\begin{array}{llllllll}
b_{11} & b_{12} & b_{13} & 1 & 0 & 0 & 0 \\
b_{21} & b_{22} & b_{23} & 0 & 1 & 0 & 0 \\
b_{31} & b_{32} & b_{33} & 0 & 0 & 1 & 0 \\
b_{41} & b_{42} & b_{43} & 0 & 0 & 0 & 1
\end{array}\right)}_{\text {RHS and identity }} .
$$

- Its solution simultaneously solves the linear sets:

$$
\mathbf{A x}_{1}=\mathbf{b}_{1}, \mathbf{A x}_{2}=\mathbf{b}_{2}, \mathbf{A} \mathbf{x}_{3}=\mathbf{b}_{3}, \text { and } \mathbf{A Y}=\mathbf{1}
$$

where the \mathbf{x}_{i} 's and \mathbf{b}_{i} 's are column vectors.

Gauss-Jordan Elimination

- GJE uses one or more elementary row operations to reduce matrix A to the identity matrix.
- The RHS of the generalized equation becomes the solution set and \mathbf{Y} becomes \mathbf{A}^{-1}.
- Disadvantages:

1. Requires all \mathbf{b}_{i} 's to be stored and manipulated at same time \Rightarrow memory hog.
2. Don't always need \mathbf{A}^{-1}.

- Other methods more efficient, but good backup.

Procedure

- Start with simple augmented matrix as example:

$$
\left(\begin{array}{ccc|c}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
a_{31} & a_{32} & a_{33} & b_{3}
\end{array}\right)
$$

- Divide first row $\left(\mathbf{a}_{1} \mid \mathbf{b}_{1}\right)$ by first element a_{11}.
- Subtract $a_{i 1}\left(\mathbf{a}_{1} \mid \mathbf{b}_{1}\right)^{\prime}$ from all other rows:

$$
\left(\begin{array}{ccc|c}
1 & a_{12} / a_{11} & a_{13} / a_{11} & b_{1} / a_{11} \\
0 & a_{22}-a_{21}\left(a_{12} / a_{11}\right) & a_{23}-a_{21}\left(a_{13} / a_{11}\right) & b_{2}-a_{21}\left(b_{1} / a_{11}\right) \\
0 & a_{32}-a_{31}\left(a_{12} / a_{11}\right) & a_{33}-a_{31}\left(a_{13} / a_{11}\right) & b_{3}-a_{31}\left(b_{1} / a_{11}\right)
\end{array}\right)
$$

- Continue process for $2^{\text {nd }}$ row, etc.
- Problem occurs if leading diagonal element ever becomes zero.
- Also, procedure is numerically unstable (in presence of RE)!
- Solution: use "pivoting"-rearrange remaining rows (partial pivoting) or rows and columns (full pivoting-requires permutation!) so largest coefficient is in diagonal position.
- Best to "normalize" equations (implicit pivoting) so largest coefficient in each row is exactly unity before starting the procedure.

Gaussian elimination with backsubstitution

- If, during GJE, only subtract rows below pivot, will be left with a triangular matrix ("Gaussian elimination"):

$$
\left(\begin{array}{ccc}
a_{11}^{\prime} & a_{12}^{\prime} & a_{13}^{\prime} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} \\
0 & 0 & a_{33}^{\prime}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
b_{1}^{\prime} \\
b_{2}^{\prime} \\
b_{3}^{\prime}
\end{array}\right)
$$

- Solution for x_{3} is then trivial: $x_{3}=b_{3}^{\prime} / a_{33}^{\prime}$.
- Substitute into $2^{\text {nd }}$ row to get x_{2}.
- Substitute x_{3} and x_{2} into $1^{\text {st }}$ row to get x_{1}.
- Faster than GJE, but still memory hog.

