
Class 6. Numerical Linear Algebra, Part 1

• Probably the simplest kind of problem.

• Occurs in many contexts, often as part of larger problem.

• Symbolic manipulation packages can do linear algebra analytically (e.g., Mathematica,
Maple, etc.).

• Numerical methods needed when:

– Number of equations very large.

– One or more coefficients numerical.

Linear Systems

• Write linear system as:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

... =
...

am1x1 + am2x2 + · · · + amnxn = bm

– This system has n unknowns and m equations.

– If n = m, system is closed.

– If m ≤ n and any equation is a linear combination of any others, equations are
degenerate and system is singular.

Numerical Constraints

• Numerical methods have their own problems when:

1. Equations are degenerate “within round-off error.”

2. Accumulated round-off errors swamp solution (magnitudes of a’s and x’s vary
wildly).

• For n, m < 50, single precision usually OK (but why bother?).

• For n, m < 200, double precision usually OK.

• For 200 < n, m < few thousand, solutions possible only for sparse systems (lots of a’s
zero).

1



Matrix Form

• Write system in matrix form:
Ax = b,

where:

A =









a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn









.

Matrix Data Representation

• Recall, C stores data in row-major form:

a11, a12, . . . , a1n; a21, a22, . . . , a2n; . . . ; am1, am2, . . . , amn.

• If using “pointer to array of pointers to rows” scheme in C, can reference entire rows
by first index, e.g., 3rd row = a[2].

(!) Recall in C array indices start at zero!

• FORTRAN stores data in column-major form:

a11, a21, . . . , am1; a12, a22, . . . , am2; . . . ; a1n, a2n, . . . , amn.

Note on Numerical Recipes in C

• The canned routines in NRiC make use of special functions defined in nrutil.c (header
nrutil.h).

– In particular, arrays and matrices are allocated dynamically with indices starting
at 1, not 0.

– If you want to interface with the NRiC routines, but prefer the normal C array
index convention, pass arrays by subtracting 1 from the pointer address (i.e., pass
p - 1 instead of p) and pass matrices by using the functions convert matrix()

and free convert matrix() in nrutil.c (see NRiC §1.2 for more information).

Tasks of Linear Algebra

• We will consider the following tasks:

1. Solve Ax = b, given A and b.

2. Solve Axi = bi for multiple bi’s.

3. Calculate A−1, where A−1A = 1, the identity matrix.

4. Calculate the determinant of A, det(A).

2



• Large packages of routines available for these tasks, e.g., LINPACK, LAPACK, GSL
(public domain), IMSL, NAG libraries (commercial).

• We will look at methods assuming n = m.

The Augmented Matrix

• The equation Ax = b can be generalized to a form better suited to efficient manipu-
lation:

(A|b) =









a11 a12 · · · a1n b1

a21 a22 · · · a2n b2

...
...

...
...

an1 an2 · · · ann bn









.

• The system can be solved by performing operations on the augmented matrix.

• The xi’s are placeholders that can be omitted until the end of the computation.

Elementary row operations

• The following row operations can be performed on an augmented matrix without chang-
ing the solution of the underlying system of equations:

1. Interchange two rows.

2. Multiply a row by a nonzero real number.

3. Add a multiple of one row to another row.

• The idea is to apply these operations in sequence until the system of equations is
trivially solved.

The generalized matrix equation

• Consider the generalized linear matrix equation:

(
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

)

︸ ︷︷ ︸

coefficients

(
x11 x12 x13 y11 y12 y13 y14

x21 x22 x23 y21 y22 y23 y24

x31 x32 x33 y31 y32 y33 y34

x41 x42 x43 y41 y42 y43 y44

)

︸ ︷︷ ︸

solutions and inverse

=

(
b11 b12 b13 1 0 0 0

b21 b22 b23 0 1 0 0

b31 b32 b33 0 0 1 0

b41 b42 b43 0 0 0 1

)

︸ ︷︷ ︸

RHS and identity

.

• Its solution simultaneously solves the linear sets:

Ax1 = b1, Ax2 = b2, Ax3 = b3, and AY = 1,

where the xi’s and bi’s are column vectors.

3



Gauss-Jordan Elimination

• GJE uses one or more elementary row operations to reduce matrix A to the identity
matrix.

• The RHS of the generalized equation becomes the solution set and Y becomes A−1.

• Disadvantages:

1. Requires all bi’s to be stored and manipulated at same time ⇒ memory hog.

2. Don’t always need A−1.

• Other methods more efficient, but good backup.

Procedure

• Start with simple augmented matrix as example:






a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3






• Divide first row (a1|b1) by first element a11.

• Subtract ai1(a1|b1)
′ from all other rows:






1 a12/a11 a13/a11 b1/a11

0 a22 − a21(a12/a11) a23 − a21(a13/a11) b2 − a21(b1/a11)
0 a32 − a31(a12/a11) a33 − a31(a13/a11) b3 − a31(b1/a11)






• Continue process for 2nd row, etc.

• Problem occurs if leading diagonal element ever becomes zero.

• Also, procedure is numerically unstable (in presence of RE)!

• Solution: use “pivoting”—rearrange remaining rows (partial pivoting) or rows and

columns (full pivoting—requires permutation!) so largest coefficient is in diagonal po-
sition.

• Best to “normalize” equations (implicit pivoting) so largest coefficient in each row is
exactly unity before starting the procedure.

4



Gaussian elimination with backsubstitution

• If, during GJE, only subtract rows below pivot, will be left with a triangular matrix
(“Gaussian elimination”):






a′

11
a′

12
a′

13

0 a′

22
a′

23

0 0 a′

33











x1

x2

x3




 =






b′
1

b′
2

b′
3






– Solution for x3 is then trivial: x3 = b′
3
/a′

33
.

– Substitute into 2nd row to get x2.

– Substitute x3 and x2 into 1st row to get x1.

• Faster than GJE, but still memory hog.

5


