Class 7. Numerical Linear Algebra, Part 2

LU Decomposition

• Suppose we can write \mathbf{A} as a product of two matrices: $\mathbf{A} = \mathbf{L}\mathbf{U}$, where \mathbf{L} is lower triangular and \mathbf{U} is upper triangular:

$$\mathbf{L} = \begin{pmatrix} \times & 0 & 0 \\ \times & \times & 0 \\ \times & \times & \times \end{pmatrix} \qquad \qquad \mathbf{U} = \begin{pmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & 0 & \times \end{pmatrix}$$

- Then $A\mathbf{x} = (\mathbf{L}\mathbf{U})\mathbf{x} = \mathbf{L}(\mathbf{U}\mathbf{x}) = \mathbf{b}$, i.e., must solve,
 - (1) Ly = b; (2) Ux = y.
- Can $\underline{\text{reuse}}$ L and U for subsequent calculations.
- Why is this better?
 - Solving triangular matrices is easy: just use forward substitution for (1), back-substitution for (2).
- Problem is, how to decompose A into L and U?
 - Expand matrix multiplication \mathbf{LU} to get n^2 equations for $n^2 + n$ unknowns (elements of \mathbf{L} and \mathbf{U} plus n extras because diagonal elements counted twice).
 - Get an extra *n* equations by choosing $L_{ii} = 1$ (i = 1, n).
 - Then use <u>Crout's algorithm</u> for finding solution to these $n^2 + n$ equations "trivially" (NRiC §2.3).

LU decomposition in NRiC

- The routines ludcmp() and lubksb() perform LU decomposition and backsubstituion, respectively.
- Can easily compute \mathbf{A}^{-1} (solve for the identity matrix column by column) and det(\mathbf{A}) (find the product of the diagonal elements of the *LU* decomposed matrix)—see *NRiC* §2.3.
- *Warning*: for large matrices, computing $det(\mathbf{A})$ can overflow or underflow the computer's floating-point dynamic range (there are ways around this).

Iterative Improvement

- For large sets of linear equations Ax = b, roundoff error may become a problem.
- We want to know \mathbf{x} but we only have $\mathbf{x} + \delta \mathbf{x}$, which is an exact solution to $\mathbf{A}(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b}$.

• Subtract the first equation from the second, and use the second to eliminate $\delta \mathbf{b}$:

$$\mathbf{A}\delta\mathbf{x} = \mathbf{A}(\mathbf{x} + \delta\mathbf{x}) - \mathbf{b}.$$

• The RHS is known, hence can solve for $\delta \mathbf{x}$. Subtract this from the wrong solution to get an improved solution (make sure to use doubles!). See mprove() in *NRiC*.

Tridiagonal Matrices

• Many systems can be written as (or reduced to):

$$a_i x_{i-1} + b_i x_i + c_i x_{i+1} = d_i$$
 $i = 1, n$

i.e., a tridiagonal matrix:

$$\begin{bmatrix} b_{1} & c_{1} & & & 0's \\ a_{2} & b_{2} & c_{2} & & & \\ & a_{3} & b_{3} & c_{3} & & \\ & & \ddots & \ddots & \ddots & \\ & & & a_{n-1} & b_{n-1} & c_{n-1} \\ 0's & & & & a_{n} & b_{n} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{n-1} \\ x_{n} \end{bmatrix} = \begin{bmatrix} d_{1} \\ d_{2} \\ d_{3} \\ \vdots \\ d_{n-1} \\ d_{n} \end{bmatrix}.$$

Here a_1 and c_n are associated with "boundary conditions" (i.e., x_0 and x_{n+1}).

• LU decomposition and backsubstitution is very efficient for tri-di systems: $\mathcal{O}(n)$ operations as opposed to $\mathcal{O}(n^3)$ in general case.

Sparse Matrices

• Operations on many sparse systems in general can be optimized, e.g.,

```
tridiagonal;
band diagonal with bandwidth M;
block diagonal;
banded.
```

• See NRiC §2.7 for various systems and techniques.

Iterative methods

- For very large systems, direct solution methods (e.g., *LU* decomposition) are slow and RE prone.
- Often iterative methods much more efficient:
 - 1. Guess a trial solution \mathbf{x}^0 .
 - 2. Compute a correction $\mathbf{x}^1 = \mathbf{x}^0 + \delta \mathbf{x}$.
 - 3. Iterate procedure until convergence, i.e., $|\delta \mathbf{x}| < \Delta$.
- E.g., congugate gradient method for sparse systems (NRiC §2.7).

Singular Value Decomposition

- Can diagnose or (nearly) solve singular or near-singular systems.
- Used for solving linear least-squares problems.
- <u>Theorem</u>: any $m \times n$ matrix **A** (with *m* rows and *n* columns) can be written:

$$\mathbf{A} = \mathbf{U}\mathbf{W}\mathbf{V}^{\mathrm{T}},$$

where $\mathbf{U}(m \times n)$ and $\mathbf{V}(n \times n)$ are orthogonal¹ and $\mathbf{W}(n \times n)$ is a diagonal matrix.

- <u>Proof</u>: buy a good linear algebra textbook...
- The *n* diagonal values w_i of **W** are zero or positive and are called the "singular values."
- The *NRiC* routine svdcmp() returns U, V, and W given A. You have to trust it (or test it yourself!).
 - Uses Householder reduction, QR diagonalization, etc.
- If **A** is square, then we know²

$$\mathbf{A}^{-1} = \mathbf{V} \left[\operatorname{diag}(1/w_i) \right] \mathbf{U}^{\mathrm{T}}.$$

- This is fine so long as no w_i is too small (or zero). Otherwise, the presence of small or zero w_i tell you how singular your system is...

Definitions

- <u>Condition number</u> $\operatorname{cond}(\mathbf{A}) = (\max w_i)/(\min w_i).$
 - If $\operatorname{cond}(\mathbf{A}) = \infty$, **A** is singular.
 - If cond(**A**) very large (~ e_m^{-1}), **A** is <u>ill-conditioned</u>.
- Consider Ax = b. If A is singular, there is some subspace of x (the <u>nullspace</u>) such that Ax = 0.
- The <u>nullity</u> of **A** is the dimension of the nullspace (the number of linearly independent vectors **x** that can be found in it).
- The subspace of **b** such that Ax = b is the range of **A**.
- The <u>rank</u> of **A** is the dimension of the range.

 $^{{}^{1}\}mathbf{U}$ has orthonormal columns while \mathbf{V} , being square, has both orthonormal rows and columns.

²Since **U** and **V** are square and orthogonal, their inverses are equal to their transposes, and since **W** is diagonal, its inverse is a diagonal matrix whose elements are $1/w_i$.

The homogeneous equation

- SVD constructs orthonormal bases for the nullspace and range of a matrix.
- Columns of **U** with corresponding non-zero w_i are an orthonormal basis for the range.
- Columns of V with corresponding zero w_i are an orthonormal basis for the nullspace.
- Hence immediately have solution for $\mathbf{A}\mathbf{x} = \mathbf{0}$, i.e., the columns of \mathbf{V} with corresponding zero w_i .

Residuals

- If $\mathbf{b} \ (\neq \mathbf{0})$ lies in the range of \mathbf{A} , then the singular equations do in fact have a solution.
- Even if **b** is outside the range of **A**, can get solution which minimizes residual $r = |\mathbf{A}\mathbf{x} \mathbf{b}|$.
 - Trick: replace $1/w_i$ by 0 if $w_i = 0$ and compute

$$\mathbf{x} = \mathbf{V} \left[\operatorname{diag}(1/w_i) \right] (\mathbf{U}^{\mathrm{T}} \mathbf{b}).$$

• Similarly, can set $1/w_i = 0$ if w_i very small.

Approximation of matrices

• Can write $\mathbf{A} = \mathbf{U}\mathbf{W}\mathbf{V}^{\mathrm{T}}$ as

$$A_{ij} = \sum_{k=1}^{N} w_k U_{ik} V_{jk}.$$

- If most of the singular values w_k are small, then **A** is well-approximated by only a few terms in the sum (strategy: sort w_k 's in descending order).
- For large memory savings, just store the columns of **U** and **V** corresponding to non-negligible w_k 's.
- Useful technique for digital image processing.