Class 7. Numerical Linear Algebra, Part 2

$L U$ Decomposition

- Suppose we can write \mathbf{A} as a product of two matrices: $\mathbf{A}=\mathbf{L} \mathbf{U}$, where \mathbf{L} is lower triangular and \mathbf{U} is upper triangular:

$$
\mathbf{L}=\left(\begin{array}{ccc}
\times & 0 & 0 \\
\times & \times & 0 \\
\times & \times & \times
\end{array}\right) \quad \mathbf{U}=\left(\begin{array}{ccc}
\times & \times & \times \\
0 & \times & \times \\
0 & 0 & \times
\end{array}\right)
$$

- Then $\mathbf{A x}=(\mathbf{L U}) \mathbf{x}=\mathbf{L}(\mathbf{U x})=\mathbf{b}$, i.e., must solve,
(1) $\mathbf{L y}=\mathbf{b}$; (2) $\mathbf{U x}=\mathbf{y}$.
- Can reuse \mathbf{L} and \mathbf{U} for subsequent calculations.
- Why is this better?
- Solving triangular matrices is easy: just use forward substitution for (1), backsubstitution for (2).
- Problem is, how to decompose \mathbf{A} into \mathbf{L} and \mathbf{U} ?
- Expand matrix multiplication $\mathbf{L U}$ to get n^{2} equations for $n^{2}+n$ unknowns (elements of \mathbf{L} and \mathbf{U} plus n extras because diagonal elements counted twice).
- Get an extra n equations by choosing $L_{i i}=1(i=1, n)$.
- Then use Crout's algorithm for finding solution to these $n^{2}+n$ equations "trivially" (NRiC §2.3).

$L U$ decomposition in NRiC

- The routines ludcmp() and lubksb() perform $L U$ decomposition and backsubstituion, respectively.
- Can easily compute \mathbf{A}^{-1} (solve for the identity matrix column by column) and $\operatorname{det}(\mathbf{A})$ (find the product of the diagonal elements of the $L U$ decomposed matrix) - see NRiC §2.3.
- Warning: for large matrices, computing $\operatorname{det}(\mathbf{A})$ can overflow or underflow the computer's floating-point dynamic range (there are ways around this).

Iterative Improvement

- For large sets of linear equations $\mathbf{A x}=\mathbf{b}$, roundoff error may become a problem.
- We want to know \mathbf{x} but we only have $\mathbf{x}+\delta \mathbf{x}$, which is an exact solution to $\mathbf{A}(\mathbf{x}+\delta \mathbf{x})=$ $\mathbf{b}+\delta \mathbf{b}$.
- Subtract the first equation from the second, and use the second to eliminate $\delta \mathbf{b}$:

$$
\mathbf{A} \delta \mathbf{x}=\mathbf{A}(\mathbf{x}+\delta \mathbf{x})-\mathbf{b}
$$

- The RHS is known, hence can solve for $\delta \mathbf{x}$. Subtract this from the wrong solution to get an improved solution (make sure to use doubles!). See mprove() in NRiC.

Tridiagonal Matrices

- Many systems can be written as (or reduced to):

$$
a_{i} x_{i-1}+b_{i} x_{i}+c_{i} x_{i+1}=d_{i} \quad i=1, n
$$

i.e., a tridiagonal matrix:

$$
\left[\begin{array}{cccccc}
b_{1} & c_{1} & & & & 0^{\prime} \mathrm{S} \\
a_{2} & b_{2} & c_{2} & & & \\
& a_{3} & b_{3} & c_{3} & & \\
& & \ddots & \ddots & \ddots & \\
& & & a_{n-1} & b_{n-1} & c_{n-1} \\
0^{\prime} \mathrm{S} & & & & a_{n} & b_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
d_{1} \\
d_{2} \\
d_{3} \\
\vdots \\
d_{n-1} \\
d_{n}
\end{array}\right] .
$$

Here a_{1} and c_{n} are associated with "boundary conditions" (i.e., x_{0} and x_{n+1}).

- $L U$ decomposition and backsubstitution is very efficient for tri-di systems: $\mathcal{O}(n)$ operations as opposed to $\mathcal{O}\left(n^{3}\right)$ in general case.

Sparse Matrices

- Operations on many sparse systems in general can be optimized, e.g., tridiagonal;
band diagonal with bandwidth M;
block diagonal; banded.
- See NRiC $\S 2.7$ for various systems and techniques.

Iterative methods

- For very large systems, direct solution methods (e.g., $L U$ decomposition) are slow and RE prone.
- Often iterative methods much more efficient:

1. Guess a trial solution \mathbf{x}^{0}.
2. Compute a correction $\mathbf{x}^{1}=\mathbf{x}^{0}+\delta \mathbf{x}$.
3. Iterate procedure until convergence, i.e., $|\delta \mathbf{x}|<\Delta$.

- E.g., congugate gradient method for sparse systems (NRiC §2.7).

Singular Value Decomposition

- Can diagnose or (nearly) solve singular or near-singular systems.
- Used for solving linear least-squares problems.
- Theorem: any $m \times n$ matrix \mathbf{A} (with m rows and n columns) can be written:

$$
\mathbf{A}=\mathbf{U} \mathbf{W} \mathbf{V}^{\mathrm{T}},
$$

where $\mathbf{U}(m \times n)$ and $\mathbf{V}(n \times n)$ are orthogonal ${ }^{1}$ and $\mathbf{W}(n \times n)$ is a diagonal matrix.

- Proof: buy a good linear algebra textbook...
- The n diagonal values w_{i} of \mathbf{W} are zero or positive and are called the "singular values."
- The $N R i C$ routine $\operatorname{svdcmp}()$ returns \mathbf{U}, \mathbf{V}, and \mathbf{W} given \mathbf{A}. You have to trust it (or test it yourself!).
- Uses Householder reduction, $Q R$ diagonalization, etc.
- If \mathbf{A} is square, then we know^{2}

$$
\mathbf{A}^{-1}=\mathbf{V}\left[\operatorname{diag}\left(1 / w_{i}\right)\right] \mathbf{U}^{\mathrm{T}}
$$

- This is fine so long as no w_{i} is too small (or zero). Otherwise, the presence of small or zero w_{i} tell you how singular your system is...

Definitions

- Condition number cond $(\mathbf{A})=\left(\max w_{i}\right) /\left(\min w_{i}\right)$.
- If $\operatorname{cond}(\mathbf{A})=\infty, \mathbf{A}$ is singular.
- If cond (\mathbf{A}) very large $\left(\sim e_{m}^{-1}\right), \mathbf{A}$ is ill-conditioned.
- Consider $\mathbf{A x}=\mathbf{b}$. If \mathbf{A} is singular, there is some subspace of \mathbf{x} (the nullspace) such that $\mathbf{A x}=\mathbf{0}$.
- The nullity of \mathbf{A} is the dimension of the nullspace (the number of linearly independent vectors \mathbf{x} that can be found in it).
- The subspace of \mathbf{b} such that $\mathbf{A x}=\mathbf{b}$ is the range of \mathbf{A}.
- The rank of \mathbf{A} is the dimension of the range.

[^0]
The homogeneous equation

- SVD constructs orthonormal bases for the nullspace and range of a matrix.
- Columns of \mathbf{U} with corresponding non-zero w_{i} are an orthonormal basis for the range.
- Columns of \mathbf{V} with corresponding zero w_{i} are an orthonormal basis for the nullspace.
- Hence immediately have solution for $\mathbf{A x}=\mathbf{0}$, i.e., the columns of \mathbf{V} with corresponding zero w_{i}.

Residuals

- If $\mathbf{b}(\neq \mathbf{0})$ lies in the range of \mathbf{A}, then the singular equations do in fact have a solution.
- Even if \mathbf{b} is outside the range of \mathbf{A}, can get solution which minimizes residual $r=$ $|A x-b|$.
- Trick: replace $1 / w_{i}$ by 0 if $w_{i}=0$ and compute

$$
\mathbf{x}=\mathbf{V}\left[\operatorname{diag}\left(1 / w_{i}\right)\right]\left(\mathbf{U}^{\mathrm{T}} \mathbf{b}\right)
$$

- Similarly, can set $1 / w_{i}=0$ if w_{i} very small.

Approximation of matrices

- Can write $\mathbf{A}=\mathbf{U W} \mathbf{V}^{\mathrm{T}}$ as

$$
A_{i j}=\sum_{k=1}^{N} w_{k} U_{i k} V_{j k}
$$

- If most of the singular values w_{k} are small, then \mathbf{A} is well-approximated by only a few terms in the sum (strategy: sort w_{k} 's in descending order).
- For large memory savings, just store the columns of \mathbf{U} and \mathbf{V} corresponding to nonnegligible w_{k} 's.
- Useful technique for digital image processing.

[^0]: ${ }^{1} \mathbf{U}$ has orthonormal columns while \mathbf{V}, being square, has both orthonormal rows and columns.
 ${ }^{2}$ Since \mathbf{U} and \mathbf{V} are square and orthogonal, their inverses are equal to their transposes, and since \mathbf{W} is diagonal, its inverse is a diagonal matrix whose elements are $1 / w_{i}$.

