Class 8. Root Finding in 1-D

Nonlinear Equations

- Often (most of the time??) the relevant system of equations is nonlinear in the unknowns.
- Then, cannot decompose as $\mathbf{A x}=\mathbf{b}$. Oh well.
- Instead write as:

1. $f(x)=0$ (for functions of one variable, i.e., 1-D);
2. $\mathbf{f}(\mathbf{x})=\mathbf{0}$ (for $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \mathbf{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$, i.e., n-D $)$.

- Not guaranteed to have any real solutions, but generally do for astrophysical problems.

Solutions in 1-D

- Generally, solving multi-D equations is much harder, so we'll start with the 1-D case first...
- By writing $f(x)=0$ we have reduced the problem to solving for the roots of f.
- In 1-D it is usually possible to trap or bracket the desired roots and hunt them down.
- Typically all root-finding methods proceed by iteration, improving a trial solution until some convergence criterion is satisfied.

Function Pathologies

- Before blindly applying a root-finding algorithm to a problem, it is essential that the form of the equation in question be understood: graph it!
- For smooth functions, good algorithms will always converge, provided the initial guess is good enough.
- Pathologies include discontinuities, singularities, multiple or very close roots, or no roots at all!

Numerical Root Finding

- Suppose $f(a)$ and $f(b)$ have opposite sign.
- Then, if f is continuous on the interval (a, b), there must be at least one root between a and b (this is the Intermediate Value Theorem).
- Such roots are said to be bracketed.

Example Application

- Use root finding to calculate the equilibrium temperature of the ISM.
- The ISM is a very diffuse plasma.
- Heated by nearby stars and cosmic rays.
- Cooled by a variety of processes:
* Bremsstrahlung: collisions between electrons and ions.
* Atom-electron collisions followed by radiative decay.
* Thermal radiation from dust grains.
- Equilibrium temperature given when rate of heating $H=$ rate of cooling C.
- Often H is not a function of temperature T.
- Usually C is a complex, nonlinear function of T.

- To solve, find T such that $H-C(T)=0$.

Bracketing and Bisection

- NRiC $\S 9.1$ lists some simple bracketing routines that search for sign changes of f :
- zbrac(): expand search range geometrically;
- zbrak(): look for roots in subintervals.
- Once bracketed, root is easy to find by bisection:
- Evaluate f at interval midpoint $(a+b) / 2$.
- Root must be bracketed by midpoint and whichever a or b gives f of opposite sign.
- Bracketing interval decreases by 2 each iteration:

$$
\varepsilon_{n+1}=\varepsilon_{n} / 2
$$

- Hence to achieve error tolerance of ε starting from interval of size $\varepsilon_{0}\left(\varepsilon \leq \varepsilon_{0}\right)$ requires $n=\log _{2}\left(\varepsilon_{0} / \varepsilon\right)$ step(s).

Convergence

- Bisection converges linearly (first power of ε).
- Methods for which

$$
\varepsilon_{n+1}=\text { constant } \times\left(\varepsilon_{n}\right)^{m}, m>1,
$$

are said to converge superlinearly.

- Note error actually decreases exponentially for bisection. It converges "linearly" because successive significant figures are won linearly with computational effort (i.e., $\underline{1} \rightarrow 0 . \underline{5} \rightarrow 0.2 \underline{5} \rightarrow 0.12 \underline{5} \rightarrow \cdots)$.

Tolerance

- What is a practical tolerance ε for convergence?
- Best you can do is machine precision (e_{m}, about 10^{-7} in single precision); more practically, absolute convergence within $e_{m}(|a|+|b|) / 2$ is used.
- Sometimes consider fractional accuracy,

$$
\frac{\left|x_{i+1}-x_{i}\right|}{\left|x_{i}\right|} \sim e_{m}
$$

but this can fail for x_{i} near zero.

Newton-Raphson Method

- Can we do better than linear convergence? Duh!
- Expand $f(x)$ in a Taylor series:

$$
f(x+\delta)=f(x)+f^{\prime}(x) \delta+\frac{f^{\prime \prime}(x)}{2} \delta^{2}+\ldots
$$

- For small $|\delta|$, drop higher-order terms, so:

$$
f(x+\delta)=0 \text { implies } \delta=-\frac{f(x)}{f^{\prime}(x)}
$$

- δ is correction added to current guess of root, i.e.,

$$
x_{i+1}=x_{i}+\delta .
$$

- Graphically, Newton-Raphson (NR) uses tangent line at x_{i} to find zero crossing, then uses x at zero crossing as next guess:

- Note: only works near root...
- When higher order terms important, NR fails spectacularly. Other pathologies exist too:

Shoots to infinity

Never converges

- Why use NR if it fails so badly?
- Can show that

$$
\varepsilon_{i+1}=-\varepsilon_{i}^{2} \frac{f^{\prime \prime}(x)}{2 f^{\prime}(x)},
$$

i.e., quadratic convergence!

- Note both $f(x)$ and $f^{\prime}(x)$ must be evaluated each iteration, plus both must be continuous near root.
- Popular use of NR is to "polish up" bisection root.

