Class 8. Root Finding in 1-D

Nonlinear Equations

- Often (most of the time??) the relevant system of equations is <u>nonlinear</u> in the unknowns.
- Then, cannot decompose as $\mathbf{A}\mathbf{x} = \mathbf{b}$. Oh well.
- Instead write as:
 - 1. f(x) = 0 (for functions of one variable, i.e., 1-D);
 - 2. $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ (for $\mathbf{x} = (x_1, x_2, ..., x_n)$, $\mathbf{f} = (f_1, f_2, ..., f_n)$, i.e., *n*-D).
- Not guaranteed to have any real solutions, but generally do for astrophysical problems.

Solutions in 1-D

- Generally, solving multi-D equations is <u>much</u> harder, so we'll start with the 1-D case first...
- By writing f(x) = 0 we have reduced the problem to solving for the <u>roots</u> of f.
- In 1-D it is usually possible to trap or <u>bracket</u> the desired roots and hunt them down.
- Typically all root-finding methods proceed by <u>iteration</u>, improving a <u>trial solution</u> until some <u>convergence criterion</u> is satisfied.

Function Pathologies

- Before blindly applying a root-finding algorithm to a problem, it is essential that the form of the equation in question be understood: graph it!
- For smooth functions, good algorithms will always converge, provided the initial guess is good enough.
- Pathologies include discontinuities, singularities, multiple or very close roots, or no roots at all!

Numerical Root Finding

- Suppose f(a) and f(b) have opposite sign.
- Then, if f is continuous on the interval (a, b), there must be at least one root between a and b (this is the Intermediate Value Theorem).
- Such roots are said to be <u>bracketed</u>.

Example Application

- Use root finding to calculate the equilibrium temperature of the ISM.
- The ISM is a very diffuse plasma.
 - Heated by nearby stars and cosmic rays.
 - Cooled by a variety of processes:
 - * Bremsstrahlung: collisions between electrons and ions.
 - * Atom-electron collisions followed by radiative decay.
 - * Thermal radiation from dust grains.
- Equilibrium temperature given when rate of heating H = rate of cooling C.
 - Often H is not a function of temperature T.
 - Usually C is a complex, nonlinear function of T.

• To solve, find T such that H - C(T) = 0.

Bracketing and Bisection

- NRiC §9.1 lists some simple bracketing routines that search for sign changes of f:
 - zbrac(): expand search range geometrically;
 - zbrak(): look for roots in subintervals.
- Once bracketed, root is easy to find by <u>bisection</u>:

- Evaluate f at interval midpoint (a+b)/2.
- Root must be bracketed by midpoint and whichever a or b gives f of opposite sign.
- Bracketing interval decreases by 2 each iteration:

$$\varepsilon_{n+1} = \varepsilon_n/2.$$

- Hence to achieve error tolerance of ε starting from interval of size ε_0 ($\varepsilon \leq \varepsilon_0$) requires $n = \log_2(\varepsilon_0/\varepsilon)$ step(s).

Convergence

- Bisection converges linearly (first power of ε).
- Methods for which

$$\varepsilon_{n+1} = \text{constant} \times (\varepsilon_n)^m, \ m > 1,$$

are said to converge superlinearly.

• Note error actually decreases exponentially for bisection. It converges "linearly" because successive significant figures are won linearly with computational effort (i.e., $\underline{1} \rightarrow 0.5 \rightarrow 0.25 \rightarrow 0.125 \rightarrow \cdots$).

Tolerance

- What is a practical tolerance ε for convergence?
- Best you can do is machine precision $(e_m, \text{ about } 10^{-7} \text{ in single precision})$; more practically, absolute convergence within $e_m(|a| + |b|)/2$ is used.
- Sometimes consider <u>fractional</u> accuracy,

$$\frac{|x_{i+1} - x_i|}{|x_i|} \sim e_m,$$

but this can fail for x_i near zero.

Newton-Raphson Method

- Can we do better than linear convergence? <u>Duh</u>!
- Expand f(x) in a Taylor series:

$$f(x+\delta) = f(x) + f'(x)\delta + \frac{f''(x)}{2}\delta^2 + \dots$$

• For small $|\delta|$, drop higher-order terms, so:

$$f(x+\delta) = 0$$
 implies $\delta = -\frac{f(x)}{f'(x)}$.

• δ is correction added to current guess of root, i.e.,

$$x_{i+1} = x_i + \delta.$$

• Graphically, Newton-Raphson (NR) uses tangent line at x_i to find zero crossing, then uses x at zero crossing as next guess:

- Note: only works near root...
 - When higher order terms important, NR fails spectacularly. Other pathologies exist too:

Shoots to infinity Never converges

- Why use NR if it fails so badly?
- Can show that

$$\varepsilon_{i+1} = -\varepsilon_i^2 \frac{f''(x)}{2f'(x)},$$

i.e., quadratic convergence!

- Note both f(x) and f'(x) must be evaluated each iteration, plus both must be continuous near root.
- Popular use of NR is to "polish up" bisection root.