Class 9. Root Finding in Multi-D, and Numerical Differentiation

Nonlinear Systems of Equations

- Consider the system $f(x, y)=0, g(x, y)=0$. Plot zero contours of f and g :

- No information about f in g, and vice versa.
- In general, no good method for finding roots.
- If you are near root, best bet is NR.
E.g., For $\mathbf{F}(\mathbf{x})=\mathbf{0}$, choose $\mathbf{x}_{i+1}=\mathbf{x}_{i}+\boldsymbol{\delta}$, where $\mathbf{F}^{\prime}(\mathbf{x}) \boldsymbol{\delta}=-\mathbf{F}(\mathbf{x})$.
- This is a matrix equation: $\mathbf{F}^{\prime}(\mathbf{x})$ is a matrix with elements $\partial F_{i} / \partial x_{j}$. The matrix is called the Jacobian.
- Written out (2-D example):

$$
\begin{aligned}
\frac{\partial f}{\partial x} \delta_{x}+\frac{\partial f}{\partial y} \delta_{y} & =-f(x, y) \\
\frac{\partial g}{\partial x} \delta_{x}+\frac{\partial g}{\partial y} \delta_{y} & =-g(x, y)
\end{aligned}
$$

- Given initial guess, must evaluate matrix elements and RHS, solve system for $\boldsymbol{\delta}$, and compute next iteration \mathbf{x}_{i+1}. Then repeat (must solve 2×2 linear system each time).
- Essentially the non-linear system has been linearized to make it easier to work with.
- NRiC $\S 9.7$ discusses a global convergence strategy that combines multi-D NR with "backtracking" to improve chances of finding solutions.

Example: Interstellar Chemistry

- ISM is multiphase plasma consisting of electrons, ions, atoms, and molecules.
- Originally, the ISM was thought to be too hostile for molecules.
- But in 1968-69, radio observations discovered absorption/emission lines of $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{CO}$, $\mathrm{H}_{2} \mathrm{O}, \ldots$
- Lots of organic molecules, e.g., $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (ethanol), etc.
- In some places, all atoms have been incorporated into molecules.
- E.g., molecular clouds: dense, cold clouds of gas composed primarily of molecules. $\left(T \sim 30 \mathrm{~K}, n \sim 10^{6} \mathrm{~cm}^{-3}, M \sim 10^{5-6} M_{\odot}, R \sim 10-100 \mathrm{pc}.\right)$
- How do we predict what the abundances of different molecules should be, given n and T ?
- Need to solve a chemical reaction network.
- Consider reaction between two species A and B :
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB}$ (reaction rate $=n_{\mathrm{A}} n_{\mathrm{B}} R_{\mathrm{AB}}$).
- Reverse also possible:
$\mathrm{AB} \rightarrow \mathrm{A}+\mathrm{B}$ (reaction rate $\left.=n_{\mathrm{AB}} R_{\mathrm{AB}}^{\prime}\right)$.
- In equilibrium:

$$
\begin{aligned}
n_{\mathrm{A}} n_{\mathrm{B}} R_{\mathrm{AB}} & =n_{\mathrm{AB}} R_{\mathrm{AB}}^{\prime} ; \\
n_{\mathrm{A}}+n_{\mathrm{AB}} & =n_{\mathrm{A}}^{0} ; \\
n_{\mathrm{B}}+n_{\mathrm{AB}} & =n_{\mathrm{B}}^{0} .
\end{aligned}
$$

where n_{A}^{0} and n_{B}^{0} are normalizations so that A and B are conserved.

- Substitute normalization equations into reaction equation to get quadratic in n_{AB}, easily solved.
- However, many more possible reactions:

$$
\begin{aligned}
\mathrm{AC}+\mathrm{B} & \longleftrightarrow \mathrm{AB}+\mathrm{C} \quad \text { (exchange reaction); } \\
\mathrm{ABC} & \longleftrightarrow \mathrm{AB}+\mathrm{C} \quad \text { (dissociation reaction) }
\end{aligned}
$$

- Wind up with large nonlinear system describing all forward/reverse reactions, involving known reaction rates R, plus normalizations. Must solve given fixed n^{0} and T.

Numerical Derivatives

- For NR and function minimization, often need derivatives of functions. It's always better to use an analytical derivative if it's available.
- If you're stuck, could try:

$$
f^{\prime}(x) \simeq \frac{f(x+h)-f(x)}{h}
$$

where $|h|$ is small.

- However, this is very susceptible to RE. Better:

$$
f^{\prime}(x) \simeq \frac{f(x+h)-f(x-h)}{2 h}
$$

(This version cancels the second-derivative term in the Taylor series expansion of $f(x+$ $h)-f(x-h)$, leaving just the third- and higher-order terms.)

- Read NRiC $\S 5.7$ before trying this!

