Class 10. Statistics and the K-S Test

Statistical Description of Data

- Cf. NRiC §14.
- Statistics provides tools for understanding data.
- In the wrong hands these tools can be dangerous!
- Here's a typical data analysis cycle:

1. Apply some formula to data to compute a "statistic."
2. Find where that value falls in a probability distribution computed on the basis of some "null hypothesis."
3. If it falls in an unlikely spot (on distribution tail), conclude null hypothesis is false for your data set.

Statistics

- Statistics and probability theory are closely related. Statistics can never prove things, only disprove them by ruling out hypotheses.
- Distinguish between model-independent statistics (this class, e.g., mean, median, mode) and model-dependent statistics (next class, e.g., least-squares fitting).
- Will make use of special functions (e.g., gamma function) described in NRiC §6.

Moments of a Distribution

- The mean, median, and mode of distributions are called measures of central tendency.
- The most common description of data involves its moments, sums of integer powers of the values.
- The most familiar moment is the mean:

$$
\bar{x}=\langle x\rangle=\frac{1}{N} \sum_{i=1}^{N} x_{i} .
$$

Variance

- The width of the central value is estimated by its second moment, called the variance,

$$
\operatorname{Var}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2},
$$

or its square root, the standard deviation,

$$
\sigma=\sqrt{\mathrm{Var}}
$$

- Why $N-1$? If the mean is known a priori, i.e., if it's not measured from the data, then use N, else $N-1$. If this matters to you, then N is probably too small!
- A clever way to minimize round-off error when computing the variance is to use the corrected two-pass algorithm. First compute \bar{x}, then do:

$$
\operatorname{Var}=\frac{1}{N-1}\left\{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}-\frac{1}{N}\left[\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\right]^{2}\right\}
$$

- The second sum would be zero if \bar{x} were exact, but otherwise it does a good job of correcting RE in Var. Proof: EFTS (hint: set $\bar{x} \rightarrow \bar{x}+\epsilon$).

Other moments

- Higher moments, like skewness ($3^{\text {rd }}$ moment) and kurtosis ($4^{\text {th }}$ moment) are also sometimes used, but can be unreliable.
- Cf. NRiC §14.1.

Distribution Functions

- A distribution function (DF) $p(x)$ gives the probability of finding a value between x and $x+d x$, e.g., the familiar "normal" (Gaussian) distribution $p(x) d x=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x$.
- The expected mean data value is:

$$
<x>=\frac{\int_{-\infty}^{\infty} x p(x) d x}{\int_{-\infty}^{\infty} p(x) d x} .
$$

- For a discrete DF:

$$
<x>=\frac{\sum_{i} x_{i} p_{i}}{\sum_{i} p_{i}} .
$$

- Similar to weighted means, e.g., center of mass.

Median

- The median of a DF is the value $x_{\text {med }}$ for which larger and smaller values of x are equally probable:

$$
\int_{-\infty}^{x_{\mathrm{med}}} p(x) d x=\frac{1}{2}=\int_{x_{\mathrm{med}}}^{\infty} p(x) d x
$$

- For discrete values, sort in ascending order $(i=1,2, \ldots, N)$, then:

$$
x_{\mathrm{med}}= \begin{cases}x_{(N+1) / 2}, & \text { if } N \text { is odd } \\ \frac{1}{2}\left(x_{N / 2}+x_{N / 2+1}\right), & \text { if } N \text { is even }\end{cases}
$$

Mode

- The mode of a probability DF $p(x)$ is the value of x where the DF takes on a maximum value.
- Most useful when there is a single, sharp max, in which case it estimates the central value.
- Sometimes a distribution will be bimodal, with two relative maxima. In this case the mean and median are not very useful since they give only a "compromise" value between the two peaks.

Comparing Distributions

- Often want to know if two distributions have different means or variances (NRiC §14.2):

1. Student's t-test for significantly different means.
(a) Find number of standard errors $\sim \sigma / N^{1 / 2}$ between two means.
(b) Compute statistic using nasty formula: probability that the two means are different by chance.
(c) Small numerical value indicates significant difference.
2. F-test for significantly different variances.
(a) Compute $F=\operatorname{Var}_{1} / \operatorname{Var}_{2}$ and plug into nasty formula (the distribution of F in the case that the variances are the same - the null hypothesis - is related to the incomplete beta function).
(b) Small value indicates significant difference.

- Given two sets of data, can generalize to a single question: Are the sets drawn from the same DF? E.g., are stars distributed uniformly in the sky? Do two brands of lightbulbs have the same distribution of burn-out times?
- Recall can only disprove (to a certain confidence level), not prove.
- May have continuous or binned data.
- May want to compare one data set with known DF, or two unknown data sets with each other.
- Popular technique for binned data is the χ^{2} test. For continuous data, use the KS test. Cf. NRiC §14.3.

Chi-square (χ^{2}) test

- Suppose have N_{i} events in i th bin but expect n_{i} :

$$
\chi^{2}=\sum_{i} \frac{\left(N_{i}-n_{i}\right)^{2}}{n_{i}} .
$$

- Large value of χ^{2} indicates unlikely match (i.e., N_{i} 's probably not drawn from population represented by $n_{i}{ }^{\prime}$ s).
- Compute probability $Q\left(\chi^{2} \mid \nu\right)$ from incomplete gamma function, where ν is the number of degrees of freedom.
* Typically $\nu=N_{B}$, where N_{B} is the number of bins, or $N_{B}-1$, if the n_{i} 's are normalized such that $\sum_{i} n_{i}=\sum_{i} N_{i}$.
* Null hypothesis assumes differences $N_{i}-n_{i}$ are standard normal random variables of unit variance and zero mean.
- For two binned data sets with events R_{i} and S_{i} :

$$
\chi^{2}=\sum_{i} \frac{\left(R_{i}-S_{i}\right)^{2}}{R_{i}+S_{i}}
$$

- Have sum in denominator, rather than average, because variance of difference of two normal quantities is sum of individual variances.

Kolmogorov-Smirnov (KS) test

- Appropriate for unbinned distributions of single independent variable.
- From sorted list of data points, construct estimate $S_{N}(x)$ of the cumulative DF of the probability DF from which it was drawn...
- $S_{N}(x)$ gives fraction of data points to the left of x.
- Constant between x_{i} 's, jumps $1 / N$ at each x_{i}.
- Note $S_{N}\left(x_{\min }\right)=0, S_{N}\left(x_{\max }\right)=1$.
* Behaviour between $x_{\min }$ and $x_{\max }$ distinguishes distributions.
- Cf. NRiC Fig. 14.3.1.
- Statistic is maximum value of absolute difference between two cumulative DFs.
- To compare data set to known cumulative DF:

$$
D=\max _{x_{\min } \leq x \leq x_{\max }}\left|S_{N}(x)-P(x)\right| .
$$

- To compare two unknown data sets:

$$
D=\max _{x_{\min } \leq x \leq x_{\max }}\left|S_{N_{1}}(x)-S_{N_{2}}(x)\right| .
$$

- Plug D and $N\left(\right.$ or $\left.N_{e}=N_{1} N_{2} /\left(N_{1}+N_{2}\right)\right)$ into nasty formula to get numerical value of significance. As usual, a small value indicates a significant difference.

