
Class 11. Modeling of Data

• NRiC §15.

• Model depends on adjustable parameters.

• Can be used for “constrained interpolation.”

• Basic approach:

1. Choose figure-of-merit function (e.g., χ2).

2. Adjust best-fit parameters: minimize merit function.

3. Compute goodness-of-fit.

4. Compute error estimates for parameters.

Least Squares Fitting

• Suppose we want to fit N data points (xi, yi) with a function that depends on M
parameters aj and that each data point has a standard deviation σi. The maximum

likelihood estimate of the model parameters is obtained by minimizing:

χ2 ≡
N
∑

i=1

[

yi − y(xi; a1...aM)

σi

]2

.

• Assuming the errors are normally distributed, a “good fit” has χ2 ∼ ν, where ν =
N − M .

– NOTE: Assumption of normal errors means glitches or outliers in data may over-
bias the fit—see NRiC §15.7 for discussion of more robust methods.

– Grossly overestimated (underestimated) σi’s may give incorrect impression that
fit is very good (very bad).

– If uncertain about reliability of goodness-of-fit measure, could do Monte Carlo

simulations of fits to synthetic data.

– Question: what to do if σi’s not known? Answer: choose an arbitrary constant σ,
perform the fit, then estimate σ from the fit: σ2 =

∑N
i=1[yi − y(xi)]

2/ν (note the
denominator is what χ2 should approximately be equal to, if the fit is good).

Fitting Data to a Straight Line (Linear Regression)

• For this case the model is simply:

y(x) = y(x; a, b) = a + bx,

and

χ2(a, b) =
N
∑

i=1

(

yi − a − bxi

σi

)2

.
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• Derive formula for best-fit parameters by setting ∂χ2/∂a = 0 = ∂χ2/∂b. See NRiC

§15.2 for the derivation (note: sm uses the same formulae for its lsq routine).

• Derive uncertainties in a and b from propagation of errors:

σ2
f =

N
∑

i=1

σ2
i

(

∂f

∂yi

)2

,

where f = a(xi, yi, σi), b(xi, yi, σi) in this case (the xi’s have no uncertainties).

• Want probability that χ2 is bad by chance Q = gammq((N − 2)/2, χ2/2) > 10−3 (here
(N − 2)/2 ≡ ν/2).

General Linear Least Squares

• Can generalize to any combination that is linear in aj ’s:

y(x) =
M
∑

j=1

ajXj(x),

e.g., y(x) = a1 + a2x + a3x
2 + ... + aMxM−1, or sines and cosines.

• Define N ×M design matrix Aij = Xj(xi)/σi. Note N ≥ M for the fit to make sense.

• Also define vector b of length N where bi = yi/σi, and vector a of length M where
ai = a1, ..., aM .

• Then we wish to find a that minimizes:

χ2 = |Aa− b|2.

– This is what SVD solves!

• Recall for SVD we had A = UWVT.

• Rewriting the SVD solution we get:

a =
M
∑

j=1

(

U(j) · b

wj

)

V(j),

where U(j) (length N) and V(j) (length M) denote columns of U and V, respectively.

• As before, if wj is small (or zero), can set 1/wj = 0.

– Useful because least-squares problems are generally both overdetermined (N > M)
and underdetermined (ambiguous combinations of parameters exist)!

• Can also compute variances of estimated parameters: σ2(aj) =
∑M

i=1(Vji/wi)
2.

• Can generalize to multidimensions.
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Nonlinear Models

• Suppose model depends nonlinearly on the aj ’s, e.g., y(x) = a1 sin(a2x + a3).

• Still minimize χ2, but must proceed iteratively:

– Use anext = acur − λ∇χ2(acur) far from minimum (steepest descent), where λ is a
constant.

– Use anext = acur − D−1[∇χ2(acur)] close to minimum, where D is the Hessian

matrix.

∗ D comes from considering Taylor series expansion of f(x) near a point P:

f(x) = f(P) +
∑

i

∂f

∂xi

xi +
1

2

∑

i,j

∂2f

∂xi∂xj

xixj + ...

' c − b · x +
1

2
xAx,

where c ≡ f(P), b ≡ −∇f |P, and Aij ≡ ∂2f

∂xi∂xj

∣

∣

∣

P

. Here A is the Hessian

matrix. Note that ∇f = Ax− b.

∗ Close to its minimum, χ2 can be approximated by the above quadratic form,
and so an “exact” step can be taken to get to the point where ∇χ2 = 0. The
step is just x′ − x = −A−1

∇f .

∗ In practice, terms involving the second derivatives of y with respect to the fit
parameters can be ignored, so the Hessian matrix is much simpler to compute
(recall the χ2 function contains the model y).

– The Levenberg-Marquardt method adjusts λ to smooth the transition between
these two regimes (vary between a diagonal matrix and inverse Hessian).

∗ Cf. NRiC §15.5 for details of the L-M method.

Levenberg-Marquardt method in NRiC

• NRiC provides two routines, mrqmin() and mrqcof(), that implement the L-M method.

• The user must provide a function that computes y(xi) as well as all the partial deriva-
tives ∂y/∂aj evaluated at xi.

• The routine mrqmin() is called iteratively until a successful step (i.e., one in which λ
gets smaller) changes χ2 by less than a fractional amount, like 0.001 (no point in doing
better).

• Points to consider:

– The argument list for mrqmin() is very complicated. For example, you can request
that some parameters be held fixed (via input array ia).

– You need to specify an initial guess for each aj (and set λ < 0).
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– Estimated variances in the parameters are returned as the diagonal elements of
the covariance matrix (covar), if you call mrqmin() with λ = 0.

– Also calls NRiC routines covsrt() and gaussj().
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