Class 11. Modeling of Data

e NRiC §15.

e Model depends on adjustable parameters.

e Can be used for “constrained interpolation.”
e Basic approach:

1. Choose figure-of-merit function (e.g., x?).
2. Adjust best-fit parameters: minimize merit function.
3. Compute goodness-of-fit.

4. Compute error estimates for parameters.

Least Squares Fitting

e Suppose we want to fit N data points (z;,7y;) with a function that depends on M
parameters a; and that each data point has a standard deviation ;. The mazimum
likelihood estimate of the model parameters is obtained by minimizing:
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e Assuming the errors are normally distributed, a “good fit” has y? ~ v, where v =
N —M.

— NOTE: Assumption of normal errors means glitches or outliers in data may over-
bias the fit—see NRiC' §15.7 for discussion of more robust methods.

— Grossly overestimated (underestimated) o;’s may give incorrect impression that
fit is very good (very bad).

— If uncertain about reliability of goodness-of-fit measure, could do Monte Carlo
simulations of fits to synthetic data.

— Question: what to do if g;’s not known? Answer: choose an arbitrary constant o,
perform the fit, then estimate o from the fit: o = SN [y; — y(z:)]?/v (note the
denominator is what x? should approximately be equal to, if the fit is good).

Fitting Data to a Straight Line (Linear Regression)

e For this case the model is simply:

y(x) = y(z;a,b) = a + b,
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e Derive formula for best-fit parameters by setting dx?/0a = 0 = 9x%/0b. See NRiC
§15.2 for the derivation (note: sm uses the same formulae for its 1sq routine).

e Derive uncertainties in a and b from propagation of errors:

where f = a(x;,y;,0;), b(x;, y;, 0;) in this case (the z;’s have no uncertainties).
e Want probability that x? is bad by chance Q = gammq((N — 2)/2,x?/2) > 1072 (here
(N—-2)/2=v/2).

General Linear Least Squares

e Can generalize to any combination that is linear in a;’s:

y(r) = ;%Xj(x),

M=1"or sines and cosines.

e.g., y(x) = a; + asw + azx® + ... + ayx
e Define N x M design matriz A;j = X;(x;)/0;. Note N > M for the fit to make sense.

e Also define vector b of length N where b; = y;/0;, and vector a of length M where
a; = Qy,...,QAp7.

e Then we wish to find a that minimizes:
x? = |Aa—b|.
— This is what SVD solves!
e Recall for SVD we had A = UWV™,
e Rewriting the SVD solution we get:
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where U;y (length N) and V;y (length M) denote columns of U and V, respectively.
e As before, if w; is small (or zero), can set 1/w; = 0.

— Useful because least-squares problems are generally both overdetermined (N > M)
and underdetermined (ambiguous combinations of parameters exist)!

e Can also compute variances of estimated parameters: 0%(a;) = SN, (Vj;/w;)?.

e Can generalize to multidimensions.



Nonlinear Models
e Suppose model depends nonlinearly on the a;’s, e.g., y(x) = a1 sin(asx + as).
e Still minimize y?2, but must proceed iteratively:

— Use apext = acur — AV X?(agy) far from minimum (steepest descent), where \ is a
constant.

— Use apexs = acur — D7V X?(aew)] close to minimum, where D is the Hessian
matrix.

* D comes from considering Taylor series expansion of f(x) near a point P:
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. Here A is the Hessian

where ¢ = f(P), b= -V f|p, and 4;; = 8223];]-
matrix. Note that Vf = Ax — b.

* Close to its minimum, y? can be approximated by the above quadratic form,
and so an “exact” step can be taken to get to the point where Vx? = 0. The
step is just X’ —x = —A~IV /.

* In practice, terms involving the second derivatives of y with respect to the fit
parameters can be ignored, so the Hessian matrix is much simpler to compute
(recall the x? function contains the model ).

— The Levenberg-Marquardt method adjusts A to smooth the transition between
these two regimes (vary between a diagonal matrix and inverse Hessian).

x Cf. NRiC §15.5 for details of the L-M method.

Levenberg-Marquardt method in NR:C
e NR:iC provides two routines, mrqmin () and mrqcof (), that implement the L-M method.

e The user must provide a function that computes y(x;) as well as all the partial deriva-
tives Jy/0a; evaluated at z;.

e The routine mrqmin() is called iteratively until a successful step (i.e., one in which A
gets smaller) changes x? by less than a fractional amount, like 0.001 (no point in doing
better).

e Points to consider:

— The argument list for mrqmin () is very complicated. For example, you can request
that some parameters be held fixed (via input array ia).

— You need to specify an initial guess for each a; (and set A < 0).



— Estimated variances in the parameters are returned as the diagonal elements of
the covariance matriz (covar), if you call mrqmin() with A = 0.

— Also calls NRiC routines covsrt() and gaussj().



