Class 11. Modeling of Data

- NRiC $\S 15$.
- Model depends on adjustable parameters.
- Can be used for "constrained interpolation."
- Basic approach:

1. Choose figure-of-merit function (e.g., χ^{2}).
2. Adjust best-fit parameters: minimize merit function.
3. Compute goodness-of-fit.
4. Compute error estimates for parameters.

Least Squares Fitting

- Suppose we want to fit N data points $\left(x_{i}, y_{i}\right)$ with a function that depends on M parameters a_{j} and that each data point has a standard deviation σ_{i}. The maximum likelihood estimate of the model parameters is obtained by minimizing:

$$
\chi^{2} \equiv \sum_{i=1}^{N}\left[\frac{y_{i}-y\left(x_{i} ; a_{1} \ldots a_{M}\right)}{\sigma_{i}}\right]^{2}
$$

- Assuming the errors are normally distributed, a "good fit" has $\chi^{2} \sim \nu$, where $\nu=$ $N-M$.
- NOTE: Assumption of normal errors means glitches or outliers in data may overbias the fit - see NRiC $\S 15.7$ for discussion of more robust methods.
- Grossly overestimated (underestimated) σ_{i} 's may give incorrect impression that fit is very good (very bad).
- If uncertain about reliability of goodness-of-fit measure, could do Monte Carlo simulations of fits to synthetic data.
- Question: what to do if σ_{i} 's not known? Answer: choose an arbitrary constant σ, perform the fit, then estimate σ from the fit: $\sigma^{2}=\sum_{i=1}^{N}\left[y_{i}-y\left(x_{i}\right)\right]^{2} / \nu$ (note the denominator is what χ^{2} should approximately be equal to, if the fit is good).

Fitting Data to a Straight Line (Linear Regression)

- For this case the model is simply:

$$
y(x)=y(x ; a, b)=a+b x
$$

and

$$
\chi^{2}(a, b)=\sum_{i=1}^{N}\left(\frac{y_{i}-a-b x_{i}}{\sigma_{i}}\right)^{2} .
$$

- Derive formula for best-fit parameters by setting $\partial \chi^{2} / \partial a=0=\partial \chi^{2} / \partial b$. See NRiC $\S 15.2$ for the derivation (note: sm uses the same formulae for its lsq routine).
- Derive uncertainties in a and b from propagation of errors:

$$
\sigma_{f}^{2}=\sum_{i=1}^{N} \sigma_{i}^{2}\left(\frac{\partial f}{\partial y_{i}}\right)^{2}
$$

where $f=a\left(x_{i}, y_{i}, \sigma_{i}\right), b\left(x_{i}, y_{i}, \sigma_{i}\right)$ in this case (the x_{i} 's have no uncertainties).

- Want probability that χ^{2} is bad by chance $Q=\operatorname{gammq}\left((N-2) / 2, \chi^{2} / 2\right)>10^{-3}$ (here $(N-2) / 2 \equiv \nu / 2)$.

General Linear Least Squares

- Can generalize to any combination that is linear in a_{j} 's:

$$
y(x)=\sum_{j=1}^{M} a_{j} X_{j}(x),
$$

e.g., $y(x)=a_{1}+a_{2} x+a_{3} x^{2}+\ldots+a_{M} x^{M-1}$, or sines and cosines.

- Define $N \times M$ design matrix $A_{i j}=X_{j}\left(x_{i}\right) / \sigma_{i}$. Note $N \geq M$ for the fit to make sense.
- Also define vector \mathbf{b} of length N where $b_{i}=y_{i} / \sigma_{i}$, and vector a of length M where $a_{i}=a_{1}, \ldots, a_{M}$.
- Then we wish to find a that minimizes:

$$
\chi^{2}=|\mathbf{A} \mathbf{a}-\mathbf{b}|^{2}
$$

- This is what SVD solves!
- Recall for SVD we had $\mathbf{A}=\mathbf{U W V}{ }^{\mathrm{T}}$.
- Rewriting the SVD solution we get:

$$
\mathbf{a}=\sum_{j=1}^{M}\left(\frac{\mathbf{U}_{(j)} \cdot \mathbf{b}}{w_{j}}\right) \mathbf{V}_{(j)},
$$

where $\mathbf{U}_{(j)}$ (length N) and $\mathbf{V}_{(j)}$ (length M) denote columns of \mathbf{U} and \mathbf{V}, respectively.

- As before, if w_{j} is small (or zero), can set $1 / w_{j}=0$.
- Useful because least-squares problems are generally both overdetermined ($N>M$) and underdetermined (ambiguous combinations of parameters exist)!
- Can also compute variances of estimated parameters: $\sigma^{2}\left(a_{j}\right)=\sum_{i=1}^{M}\left(V_{j i} / w_{i}\right)^{2}$.
- Can generalize to multidimensions.

Nonlinear Models

- Suppose model depends nonlinearly on the a_{j} 's, e.g., $y(x)=a_{1} \sin \left(a_{2} x+a_{3}\right)$.
- Still minimize χ^{2}, but must proceed iteratively:
- Use $\mathbf{a}_{\text {next }}=\mathbf{a}_{\text {cur }}-\lambda \boldsymbol{\nabla} \chi^{2}\left(\mathbf{a}_{\text {cur }}\right)$ far from minimum (steepest descent), where λ is a constant.
- Use $\mathbf{a}_{\text {next }}=\mathbf{a}_{\text {cur }}-\mathbf{D}^{-1}\left[\nabla \chi^{2}\left(\mathbf{a}_{\text {cur }}\right)\right]$ close to minimum, where \mathbf{D} is the Hessian matrix.
* \mathbf{D} comes from considering Taylor series expansion of $f(\mathbf{x})$ near a point \mathbf{P} :

$$
\begin{aligned}
f(\mathbf{x}) & =f(\mathbf{P})+\sum_{i} \frac{\partial f}{\partial x_{i}} x_{i}+\frac{1}{2} \sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} x_{i} x_{j}+\ldots \\
& \simeq c-\mathbf{b} \cdot \mathbf{x}+\frac{1}{2} \mathbf{x A} \mathbf{x}
\end{aligned}
$$

where $c \equiv f(\mathbf{P}), \mathbf{b} \equiv-\left.\boldsymbol{\nabla} f\right|_{\mathbf{P}}$, and $\left.A_{i j} \equiv \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right|_{\mathbf{P}}$. Here \mathbf{A} is the Hessian matrix. Note that $\boldsymbol{\nabla} f=\mathbf{A x}-\mathbf{b}$.

* Close to its minimum, χ^{2} can be approximated by the above quadratic form, and so an "exact" step can be taken to get to the point where $\boldsymbol{\nabla} \chi^{2}=\mathbf{0}$. The step is just $\mathbf{x}^{\prime}-\mathbf{x}=-\mathbf{A}^{-1} \nabla f$.
* In practice, terms involving the second derivatives of y with respect to the fit parameters can be ignored, so the Hessian matrix is much simpler to compute (recall the χ^{2} function contains the model y).
- The Levenberg-Marquardt method adjusts λ to smooth the transition between these two regimes (vary between a diagonal matrix and inverse Hessian).
* Cf. NRiC §15.5 for details of the L-M method.

Levenberg-Marquardt method in NRiC

- NRiC provides two routines, mrqmin() and mrqcof (), that implement the L-M method.
- The user must provide a function that computes $y\left(x_{i}\right)$ as well as all the partial derivatives $\partial y / \partial a_{j}$ evaluated at x_{i}.
- The routine mrqmin() is called iteratively until a successful step (i.e., one in which λ gets smaller) changes χ^{2} by less than a fractional amount, like 0.001 (no point in doing better).
- Points to consider:
- The argument list for mrqmin() is very complicated. For example, you can request that some parameters be held fixed (via input array ia).
- You need to specify an initial guess for each a_{j} (and set $\lambda<0$).
- Estimated variances in the parameters are returned as the diagonal elements of the covariance matrix (covar), if you call mrqmin() with $\lambda=0$.
- Also calls NRiC routines covsrt() and gaussj().

