Class 13. Numerical Integration

Simple Monte Carlo Integration (NRiC §7.6)

- Can use RNGs to estimate integrals.
- Suppose we pick n random points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ uniformly in a multi-D volume V.
- Basic theorem of Monte Carlo integration:

$$
\int_{V} f d V \simeq V<f> \pm V \sqrt{\frac{\left\langle f^{2}>-<f>^{2}\right.}{N}}
$$

where

$$
<f>\equiv \frac{1}{N} \sum_{i=1}^{N} f\left(\mathbf{x}_{i}\right) \text { and }<f^{2}>\equiv \frac{1}{N} \sum_{i=1}^{N} f^{2}\left(\mathbf{x}_{i}\right)
$$

- The \pm term is a 1- σ error estimate, not a rigorous bound.
- Previous formula works fine if V is simple.
- What if we want to integrate a function g over a region W that is not easy to sample randomly?
- Solution: find a simple volume V that encloses W and define a new function $f(\mathbf{x})$, $\mathbf{x} \in V$, such that:

$$
f(\mathbf{x})= \begin{cases}g(\mathbf{x}) & \text { for all } \mathbf{x} \in W \\ 0 & \text { otherwise }\end{cases}
$$

E.g., suppose we want to integrate $g(x, y)$ over the shaded area inside area A below:

To integrate, take random samples over the whole rectangle, set

$$
f\left(x_{i}, y_{i}\right)= \begin{cases}g\left(x_{i}, y_{i}\right) & y_{i} \leq b\left(x_{i}\right) \\ 0 & \text { otherwise }\end{cases}
$$

and compute

$$
\int_{\text {shaded area }} g(x, y) d x d y \simeq \frac{A}{N} \sum_{i} f\left(x_{i}, y_{i}\right)
$$

- Nifty example: π can be estimated by integrating

$$
p(x, y)= \begin{cases}1 & x^{2}+y^{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

over a 2×2 square:

$$
\begin{aligned}
\pi & =\int_{-1}^{1} \int_{-1}^{1} p(x, y) d x d y \\
& \simeq \frac{4}{N} \sum_{i} p\left(x_{i}, y_{i}\right)
\end{aligned}
$$

- See NRiC for another worked example.
- Optimization strategy: make V as close as possible to W, since zero values of f will increase the relative error estimate.
- Principal disadvantage: accuracy increases only as square root of N.
- Fancier routines exist for faster convergence: NRiC §7.7-7.8.
- Monte Carlo techniques used in a variety of other contexts: anywhere statistical sampling is useful. E.g.,
- Predicting motion of bodies with short Lyapunov times if starting positions and velocities poorly known.
- Determining model fit significance by testing the model against many sets of random synthetic data with the same mean and variance.

Numerical Integration (Quadrature)

- NRiC $\S 4$.
- Already seen Monte Carlo integration.
- Can cast problem as a differential equation (DE):

$$
I=\int_{a}^{b} f(x) d x
$$

is equivalent to solving for $I \equiv y(b)$ the $\mathrm{DE} d y / d x=f(x)$ with the boundary condition $(\mathrm{BC}) y(a)=0$.

- Will learn about ODE solution methods next class.

Trapezoidal and Simpson's rules

- Have abscissas $x_{i}=x_{0}+i h, i=0,1, \ldots, N+1$.
- A function $f(x)$ has known values $f\left(x_{i}\right)=f_{i}$.
- Want to integrate $f(x)$ between endpoints a and b.
- Trapezoidal rule (2-point closed formula):

$$
\int_{x_{1}}^{x_{2}} f(x) d x=h\left[\frac{1}{2} f_{1}+\frac{1}{2} f_{2}\right]+\mathcal{O}\left(h^{3} f^{\prime \prime}\right)
$$

i.e., the area of a trapezoid of base h and vertex heights f_{1} and f_{2}.

- Simpson's rule (3-point closed formula):

$$
\int_{x_{1}}^{x_{3}} f(x) d x=h\left[\frac{1}{3} f_{1}+\frac{4}{3} f_{2}+\frac{1}{3} f_{3}\right]+\mathcal{O}\left(h^{5} f^{(4)}\right) .
$$

Extended trapezoidal rule

- If we apply the trapezoidal rule $N-1$ times and add the results, we get:

$$
\int_{x_{1}}^{x_{N}} f(x) d x=h\left[\frac{1}{2} f_{1}+f_{2}+f_{3}+\ldots+f_{N-1}+\frac{1}{2} f_{N}\right]+\mathcal{O}\left[\frac{(b-a)^{3} f^{\prime \prime}}{N^{2}}\right] .
$$

- Big advantage is it builds on previous work:
- Coarsest step: average f at endpoints a and b.
- Next refinement: add value at midpoint to average.
- Next: add values at $\frac{1}{4}$ and $\frac{3}{4}$ points.
- And so on. This is implemented as trapzd() in NRiC.

More sophistication

- Usually don't know N in advance, so iterate to a desired accuracy: qtrap().
- Higher-order method by cleverly adding refinements to cancel error terms: qsimp().
- Generalization to order $2 k$ (Richardson's deferred approach to the limit): qromb().
- Uses extrapolation methods to set $h \rightarrow 0$.
- For improper integrals, generally need open formulae (not evaluated at endpoints).
- For multi- D, use nested $1-D$ techniques.

