
Class 13. Numerical Integration

Simple Monte Carlo Integration (NRiC §7.6)

• Can use RNGs to estimate integrals.

• Suppose we pick n random points x1, ..., xN uniformly in a multi-D volume V .

• Basic theorem of Monte Carlo integration:

∫

V

f dV ' V <f> ± V

√

<f 2> − <f>2

N
,

where

<f> ≡
1

N

N
∑

i=1

f(xi) and <f 2> ≡
1

N

N
∑

i=1

f 2(xi).

• The ± term is a 1-σ error estimate, not a rigorous bound.

• Previous formula works fine if V is simple.

• What if we want to integrate a function g over a region W that is not easy to sample
randomly?

• Solution: find a simple volume V that encloses W and define a new function f(x),
x ∈ V , such that:

f(x) =

{

g(x) for all x ∈ W,
0 otherwise.

E.g., suppose we want to integrate g(x, y) over the shaded area inside area A below:

b(x)

Area A

To integrate, take random samples over the whole rectangle, set

f(xi, yi) =

{

g(xi, yi) yi ≤ b(xi),
0 otherwise,

and compute
∫

shaded area
g(x, y) dx dy '

A

N

∑

i

f(xi, yi).
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– Nifty example: π can be estimated by integrating

p(x, y) =

{

1 x2 + y2 ≤ 1,
0 otherwise,

over a 2 × 2 square:

π =
∫ 1

−1

∫ 1

−1
p(x, y) dx dy

'
4

N

∑

i

p(xi, yi).

– See NRiC for another worked example.

• Optimization strategy: make V as close as possible to W , since zero values of f will
increase the relative error estimate.

• Principal disadvantage: accuracy increases only as square root of N .

• Fancier routines exist for faster convergence: NRiC §7.7–7.8.

• Monte Carlo techniques used in a variety of other contexts: anywhere statistical sam-
pling is useful. E.g.,

– Predicting motion of bodies with short Lyapunov times if starting positions and
velocities poorly known.

– Determining model fit significance by testing the model against many sets of
random synthetic data with the same mean and variance.

Numerical Integration (Quadrature)

• NRiC §4.

• Already seen Monte Carlo integration.

• Can cast problem as a differential equation (DE):

I =
∫

b

a

f(x) dx

is equivalent to solving for I ≡ y(b) the DE dy/dx = f(x) with the boundary condition
(BC) y(a) = 0.

– Will learn about ODE solution methods next class.
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Trapezoidal and Simpson’s rules

• Have abscissas xi = x0 + ih, i = 0, 1, ..., N + 1.

• A function f(x) has known values f(xi) = fi.

• Want to integrate f(x) between endpoints a and b.

• Trapezoidal rule (2-point closed formula):

∫

x2

x1

f(x) dx = h
[

1

2
f1 +

1

2
f2

]

+ O(h3f ′′),

i.e., the area of a trapezoid of base h and vertex heights f1 and f2.

• Simpson’s rule (3-point closed formula):

∫

x3

x1

f(x) dx = h
[

1

3
f1 +

4

3
f2 +

1

3
f3

]

+ O(h5f (4)).

Extended trapezoidal rule

• If we apply the trapezoidal rule N − 1 times and add the results, we get:

∫

xN

x1

f(x) dx = h
[

1

2
f1 + f2 + f3 + ... + fN−1 +

1

2
fN

]

+ O

[

(b − a)3f ′′

N2

]

.

• Big advantage is it builds on previous work:

– Coarsest step: average f at endpoints a and b.

– Next refinement: add value at midpoint to average.

– Next: add values at 1
4

and 3
4

points.

– And so on. This is implemented as trapzd() in NRiC.

More sophistication

• Usually don’t know N in advance, so iterate to a desired accuracy: qtrap().

• Higher-order method by cleverly adding refinements to cancel error terms: qsimp().

• Generalization to order 2k (Richardson’s deferred approach to the limit): qromb().

– Uses extrapolation methods to set h → 0.

• For improper integrals, generally need open formulae (not evaluated at endpoints).

• For multi-D, use nested 1-D techniques.
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