
Class 14. Ordinary Differential Equations

• NRiC §16.

• ODEs involve derivatives with respect to one independent variable, e.g., time t.

• ODEs can always be reduced to a set of first-order equations (i.e., involving only first
derivatives). E.g.,

d2y

dt2
+ b(t)

dy

dt
= c(t)

is equivalent to the set

dy

dt
= z(t),

dz

dt
= c(t) − b(t)z(t).

– Example: gravity! In 1-D,

F = ma = mẍ = −
GMm

x2
= Fg.

Let z(t) = ẋ. Then ż = −GM/x2. In 3-D, just write out equations for each
component (we’ll see this again...).

• Usually new variables just derivatives of old, but sometimes need additional factors of
t to avoid pathologies.

• General problem is solving set of 1st-order ODEs,

dyi

dt
= f ′

i(t, y1, ..., yN),

where the f ′

i are known functions.1

• But, also need boundary conditions: algebraic conditions on values of yi at discrete
time(s) t...

1Often ODEs are coupled to begin with, e.g., classic Lotka-Volterra predator-prey model:

ẋ = Ax − Bxy − ex,

ẏ = −Cy + Dxy − dy.

Here x and y might represent the population of rabbits and foxes, respectively. Then A is the reproduction

rate of the rabbits, B is the consumption rate of rabbits by the foxes, C is the death rate by natural causes of

the foxes, and D is the population increase rate of the foxes due to consumption of rabbits. We’ve also added

terms with coefficients d and e representing the hunting rate by humans. For d = e = 0, the equilibrium

solution of this system is cyclical.
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ODE Boundary Conditions (BCs)

• Two categories of BC:

1. Initial Value Problem (IVP): all yi’s are given at some starting point ts, and
solution is needed from ts to tf .

2. Two-point Boundary Value Problem (BVP): yi are specified at two or more t,
e.g., some at ts, some at tf (only one BC needed for each yi).

• Generally, IVP much easier to solve than 2-pt BVP, so consider this first.

Finite Differences

• How do you represent derivatives with a discrete number system?

• Basic idea: replace dy/dt with finite differences ∆y/∆t. Then:

lim
∆t→0

∆y

∆t
→

dy

dt
.

• How do you use this to solve ODEs?

Euler’s Method

• Write ∆y/∆t = f ′(t,y) ⇒ ∆y = ∆t f ′(t,y).

• Start with known values yn at tn (initial values).

• Then yn+1 at tn+1 = tn + h is

yn+1 = yn + hf ′(tn,yn).

• h is called the step size.

• Integration is not symmetric: derivative evaluated only at start of step ⇒ error term
O(h2), from Taylor series (f(x + h) = f(x) + hf ′(x) + 1

2
h2f ′′(x) + ...). So, Euler’s

method is first order.
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• Example: consider ẏ = y with y(0) = 1. We know the solution to be y = et. Using
Euler’s method with h = 1/2, we find

y0 = 1,
y1 = y0 + y0/2 = 3/2,
y2 = y1 + y1/2 = 9/4,
y3 = y2 + y2/2 = 27/8,
...

...
...

yn = (3

2
)n,

i.e., the solution is always ≤ et (since t = nh = n/2 and e1/2 .
= 1.65).

Runge-Kutta Methods

• We can do better by symmetrizing the derivative:

– Take a trial Euler step to midpoint: compute tn+1/2 and evaluate yn+1/2.

– Use these to evaluate derivative f ′(tn+1/2,yn+1/2).

– Then use this to go back and take a full step.

• Thus:

yn+1 = yn + hf ′
[

tn +
1

2
h,yn +

1

2
hf ′(tn,yn)

]

+ O(h3).

• Can show that O(h2) terms “cancel,” so leading error term is O(h3), giving 2nd-order
Runge-Kutta (midpoint method).
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• Following previous example, first step using midpoint method:

y1 = y0 + (1/2)f ′(0 + 1/4, 1 + (1/4)f ′(0, 1)),

= 1 + (1/2)f ′(1/4, 5/4),

= 1 + (1/2)(5/4),

= 1 + 5/8,

= 1.625.
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– The idea behind midpoint method is to use Euler but with derivative at midpoint:

y(t) + hf ′(t +
1

2
h) = y(t) + h

[

f ′(t) +
1

2
hf ′(t)

]

+ O(h3).

This is essentially a Taylor series within a Taylor series.

– Use Euler to determine derivative at midpoint:

k1 = hf ′(tn, yn),

k2 = hf ′(tn +
1

2
h, yn +

1

2
k1),

yn+1 = yn + k2 + O(h3).

Fourth-order Runge-Kutta

• Actually, there are many ways to evaluate f ′ at midpoints, which add higher-order error
terms with different coefficients. Can add these together in ways such that higher-order
error terms cancel. E.g., can build 4th-order Runge-Kutta (RK4):

k1 = hf ′(tn,yn),

k2 = hf ′(tn + h/2,yn + k1/2),

k3 = hf ′(tn + h/2,yn + k2/2),

k4 = hf ′(tn + h,yn + k3).

Then:
yn+1 = yn + k1/6 + k2/3 + k3/3 + k4/6 + O(h5).
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• Disadvantage of RK4: requires f ′ to be evaluated 4 times per step.

• But, can still be cost effective if larger steps OK.

• RK4 is a workhorse method. Higher-order RK4 takes too much effort for increased
accuracy.

• Other methods (e.g., Bulirsch-Stoer, NRiC §16.4) are more accurate for smooth func-
tions.

• But RK4 often “good enough.”
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