Class 14. Ordinary Differential Equations
e NRiC §16.
e ODEs involve derivatives with respect to one independent variable, e.g., time ¢.

e ODEs can always be reduced to a set of first-order equations (i.e., involving only first
derivatives). E.g.,
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Let 2(t) = #. Then 2 = —GM/z% 1In 3-D, just write out equations for each
component (we'll see this again...).

e Usually new variables just derivatives of old, but sometimes need additional factors of
t to avoid pathologies.

e General problem is solving set of 1%*-order ODEs,
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where the f! are known functions.!

e But, also need boundary conditions: algebraic conditions on values of y; at discrete
time(s) ...

1Often ODEs are coupled to begin with, e.g., classic Lotka-Volterra predator-prey model:

& = Az — Bxy— ex,
= —Cy+ Dzy—dy.

Here x and y might represent the population of rabbits and foxes, respectively. Then A is the reproduction
rate of the rabbits, B is the consumption rate of rabbits by the foxes, C' is the death rate by natural causes of
the foxes, and D is the population increase rate of the foxes due to consumption of rabbits. We’ve also added
terms with coefficients d and e representing the hunting rate by humans. For d = ¢ = 0, the equilibrium
solution of this system is cyclical.



ODE Boundary Conditions (BCs)

e Two categories of BC:

1. Initial Value Problem (IVP): all y;’s are given at some starting point t¢,, and
solution is needed from ¢, to ty.

2. Two-point Boundary Value Problem (BVP): y; are specified at two or more t,
e.g., some at t,, some at ty (only one BC needed for each y;).

e Generally, IVP much easier to solve than 2-pt BVP, so consider this first.

Finite Differences
e How do you represent derivatives with a discrete number system?

e Basic idea: replace dy/dt with finite differences Ay/At. Then:
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e How do you use this to solve ODEs?

Euler’s Method
e Write Ay /At =1f'(t,y) = Ay = Atf'(t,y).

Start with known values y, at ¢, (initial values).

Then y, 1 at t,.1 =t, + his

h is called the step size.

Integration is not symmetric: derivative evaluated only at start of step = error term
O(h?), from Taylor series (f(z + h) = f(x) + hf'(x) + $h2f"(x) + ...). So, Euler’s
method is first order.
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e Example: consider ¢y = y with y(0) = 1. We know the solution to be y = e'. Using
Euler’s method with A = 1/2, we find

Yo = 1,

Y1 = Yo+y/2 = 3/2
Yo = Y1 +uy1/2 9/4,
ys = Y2 +y2/2 = 27/8,

Yn = (%)n>

i.e., the solution is always < e (since t = nh = n/2 and e/? = 1.65).

Runge-Kutta Methods

e We can do better by symmetrizing the derivative:

— Take a trial Euler step to midpoint: compute ¢,,41/2 and evaluate y,,1/2.
— Use these to evaluate derivative f'(¢,41/2, Ynt1/2)-

— Then use this to go back and take a full step.
e Thus: ] ]
Yn+1 = Yn + hf/ tn + éh’ yn + §hf/(tn> Yn) + O(h3)

e Can show that O(h?) terms “cancel,” so leading error term is O(h3), giving 2"d-order
Runge-Kutta (midpoint method).

)ﬁ §Xn+1 Xn+2

Xn+1/2

e Following previous example, first step using midpoint method:

yi = yo+(1/2)f(0+1/4,1+ (1/4)f'(0, 1)),
= 1+(1/2)f(1/4,5/4),
= 1+ (1/2)(5/4),
— 1+5/8,
= 1.625.



— The idea behind midpoint method is to use Euler but with derivative at midpoint:
1 1
y(t)+hf'(t+ 5h) =y(t)+h|f(t)+ §hf’(t) + O(R?).

This is essentially a Taylor series within a Taylor series.

— Use Euler to determine derivative at midpoint:
kl - hf/(tn,yn),

1 1
ky = hf’(tn+§h,yn+§k1),

Yn+1 = UYUn + k2 + O(hg)

Fourth-order Runge-Kutta

e Actually, there are many ways to evaluate f' at midpoints, which add higher-order error
terms with different coefficients. Can add these together in ways such that higher-order
error terms cancel. E.g., can build 4™-order Runge-Kutta (RK4):

ki = hf'(tn,yn),

ke = hf'(t,+h/2,y, +ki/2),
ks = hf'(t,+h/2,y, +ko/2),
ky, = hf'(t,+h,y, +ks).

Then:
Yn+t1 = Yn + k1/6 + k2/3 + k3/3 +k4/6 + O(h5)
actu?l step
'1/2//\3\\\trial steps
)ﬁ Xn+1

e Disadvantage of RK4: requires f’ to be evaluated 4 times per step.
e But, can still be cost effective if larger steps OK.

e RK4 is a workhorse method. Higher-order RK4 takes too much effort for increased
accuracy.

e Other methods (e.g., Bulirsch-Stoer, NRiC §16.4) are more accurate for smooth func-
tions.

e But RK4 often “good enough.”



