
Class 16. ODEs, Part 3

Stiff ODEs

• A system of more than one ODE is stiff if solutions vary on two or more widely disparate
lengthscales. E.g., ,

y′′ = 100y.

– General solution: y = Ae−10x + Be+10x.

– Suppose BCs are y(0) = 1, y′(0) = −10. Then B = 0, i.e., pure decaying solution.

– Numerical technique would begin giving correct solution.

– But once x becomes large, numerical solution will diverge exponentially, i.e., will
contain growing exponential solution.

– Why? RE introduces admixture of growing solution, i.e.,

ynumerical = e−10x + εe+10x (ε ≪ 1).

No matter how small ε is, it will dominate for x ≫ 1.

– Common problem in hydrodynamics.

Explicit differencing

• Consider the system
y′ = −cy (c > 0).

– The solution is y = e−ct, i.e., a decaying function.

– Explicit or forward Euler differencing with stepsize h gives

yn+1 = yn + hy′n = (1− hc)yn.

This is “explicit” because the new value yn+1 is given explicitly in terms of the
old value yn.

– Method is unstable if h > 2/c since this would mean |yn| → ∞ as n → ∞.

∗ Why? Suppose initial value is y0. Integrate over k steps from the initial point:

yk = (1− hc)ky0.

This → ±∞ (oscillating) if 1− hc < −1, i.e., if h > 2/c.

– In general, explicit differencing of stiff equations requires very small steps, i.e.,
long integration times.

1

Implicit differencing

• Simplest cure is to use implicit differencing.

– Evaluate y′ at new location/time n+ 1.

– Get backward Euler scheme:

yn+1 = yn + hy′n+1 = yn − hcyn+1,

or

yn+1 =
yn

1 + hc
=

(

1

1 + hc

)n

y0.

(Get explicit formula only because our model equation is linear.)

– Absolutely stable: yn → 0 as h (or n) → ∞, which is correct asymptotic solution.
(Note that c < 0 corresponds to y = ect, which not only is not stable, it is not
supposed to be.)

– Give up accuracy (if we stick to a first-order method) for stability at large step-
sizes.

– Nice analogy:

Imagine you are returning from a hike in the mountains. You are in a nar-
row canyon with steep walls on either side. An explicit algorithm would
sample the local gradient to find the descent direction. But following the
gradient on either side of the trail will send you bouncing back and forth
from wall to wall. You will eventually get home, but it will be long after
dark before you arrive. An implicit algorithm would have you keep your
eyes on the trail and anticipate where each step is taking you. It is well
worth the extra concentration.

• Example: compare solution methods for y′ = −cy with c = 2 and y(0) = 1. True
solution is y = e−2t. If tn = hn, then after k steps the true solution is yk = (e−2h)k.
Euler gives yn+1 = (1− 2h)yn, so after k steps, yk = (1− 2h)k. Backward Euler gives
yn+1 = yn/(1 + 2h) → yk = 1/(1 + 2h)k. For small h the solutions are similar; for
moderate h ∼ 1, the solutions are all quite divergent; for large h, the true solution and
backward Euler asymptotically agree.

Linear sets

• Can generalize to sets of linear equations with constant coefficients:

y′ = −Cy,

where C is a positive definite matrix (i.e., symmetric with positive eigenvalues).1

1An N ×N real symmetric matrix M is positive definite if zTMz > 0 for all non-zero vectors z with real

entries. This is equivalent to M having only positive eigenvalues.

2

• Explicit differencing yields
yn+1 = (1− hC)yn.

– Now An → 0 as n → ∞ iff largest eigenvalue of A has magnitude less than 1.
Thus for our system, require magnitude of largest eigenvalue of 1− hC to be less
than 1, or h < 2/λmax, where λmax is largest eigenvalue of C. (Because if λ is an
eigenvalue of a positive definite matrix C, then 1−hλ is an eigenvalue of 1−hC.)

• Implicit differencing yields

yn+1 = yn + hy′

n+1,

= (1+ hC)−1yn.

– If eigenvalues of C are λ, then eigenvalues of (1 + hC)−1 are (1 + hλ)−1 < 1 for
all h (because λ > 0).

– Price we pay for stability is that we must invert matrix.

• Result applies even to matrices C that cannot be diagonalized—cf. NR.

• For nonlinear systems, must use iterative technique (like N-R with Jacobian).

Semi-implicit methods

For a generic non-linear system

y′ = f(y)

yn+1 = yn + hf(yn+1),

In general this system has to be solved iteratively at each step. Or, we can try to linearizing
the equations (like Newton’s method):

yn+1 = yn + h

[

f(yn) +
∂f

∂y

∣

∣

∣

∣

yn

(yn+1 − yn)

]

,

yn+1 = yn + h

[

1− h
∂f

∂y

∣

∣

∣

∣

yn

]

−1

f(yn),

Higher-order methods

• Our implicit methods are all only 1st-order accurate (Euler schemes).

• Easily get 2nd-order method by averaging explicit and implicit steps:

yn+1 = yn + h(y′n + y′n+1)/2.

• Often called “Crank-Nicholson” differencing.

3

• Then, for our linear system, will get:

yn+1 =

(

1− hc/2

1 + hc/2

)

yn =

(

1− hc/2

1 + hc/2

)n

y0.

• This is unconditionally stable, although in this case the behaviour as h → ∞ is to
oscillate (in bounded fashion) about y = 0.

• Second order because (h/2) [y′(t) + y′(t+ h)] = hy′(t) + (h2/2)y′′(t) +O(h3).

• NRiC §16.6 provides generalizations of RK and BS for stiff systems.

4

