
Class 18. N -body Techniques, Part 1

The N -body Problem

• Study of the dynamics of interacting particles, usually involving mutual forces. E.g.,

Mutual Force Application
gravity stellar dynamics, planetesimals

QM molecular dynamics, solid-state physics
EM plasma physics
etc. etc.

• Stick with gravitation for now.

• Only a few literature references available, e.g., Aarseth, Danby (Ch. 9), etc.

Generalized Newton’s Laws

r̈i =
∑

j 6=i

F ij = −
∑

j 6=i

Gmj(ri − rj)

|ri − rj|3
.

• These are 3N coupled 2nd-order ODEs.

• As usual, reduce to 1st-order:

ṙi = vi (velocity),

v̇i = −
∑

j 6=i

Gmj(ri − rj)

|ri− rj|3
(acceleration).

– This makes 6N coupled 1st-order ODEs.

– We know how to solve these!

• Key is to solve the equations efficiently:

1. Solve Newton’s Laws using ODE integrator.

2. Evaluate interparticle forces Fij—several techniques.

Typical Parameters

• First, need to get a feeling for the problem...

• What are typical problem sizes?

N ' 2: Jupiter and Sun, extrasolar planets.

N ' 9: Solar system.
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N ' 10–100: Small stellar system.

N ' 100–1000: Open cluster, rubble pile!

N ' 105–106: Globular cluster, planetesimals.

N ' 107–108: Cosmological volume (DM halos).

N ' 109: Planetary rings.

N ' 1011: Galaxy.

Also have “restricted” problems where one or more “test” particles exert no gravita-
tional forces but still feel forces due to more massive particles, e.g., Lagrange problem,
comets in the Oort cloud, etc.

• What are typical timescales? ([T ] = [L]/[V ])

Solar system: Orbital time–evolution time (1–109 yrs).

Stellar system: Relaxation time (∼ 100’s of crossing times).

Globular cluster: Core collapse (∼ 10’s of relaxation times).

Galaxy: 1010 yrs (many steps).

Universe: 1010 yrs (fewer steps).

• Often to achieve steady state over many dynamical times it seems Nτ/δt ∼ constant.
=⇒ timescale and lengthscale closely coupled.

– E.g., crossing time for closed dynamical system.

Virial theorem: 2K +W = 0, K = 1

2
M〈v2〉, W = −GM2/rg.

Crossing time = [L]/[V ] ' rg/〈v2〉1/2 ' r
3/2

g /
√
GM .

∗ Typically want δt ' τD/30 = τcross/30.

– Another handy formula:

τD ' 3√
Gρ

.

E.g., for typical asteroid, ρ ' 2 g/cc so τD ' 2.3 h. For Earth, spread out mass
of Sun to 1 AU: ρ = M�/

4

3
πr3

⊕ =⇒ τD ' 1 yr. Why? ω2r = GM/r2 ⇒ 4π2/τ 2 =
GM/r3 = 4

3
πGρ. ∴ τ ∼ 3/

√
Gρ.

Units

• In MKS, G = 6.7 × 10−11, M� = 2 × 1030, r⊕ = 1.5 × 1011.

• Often want to work in scaled units to keep values close to unity.

• Typically set G ≡ 1.

– For solar system, use masses in M�, distances in AU. Then times in yr/2π and
speeds in v⊕ = 30 km s−1.

– For galaxies, could use masses in 109M�, distances in kpc. Then times would be
in ∼ 15 Myr and speeds in kpc/15 Myr.
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Constants of motion

• If there are no outside forces/torques, Newton’s Laws for a gravitating system imply:

1. Total energy is conserved.

2. Total angular momentum is conserved.

3. System center of mass is either stationary in the inertial frame, or moves with
constant velocity.

– Can therefore set rg = vg ≡ 0.

N = 2 problem

• Solved by Kepler, explained by Newton.

• General solution (ellipse):

r = a(1 − e cosψ)

cos θ =
cosψ − e

1 − e cosψ

where a = semi-major axis, e = eccentricity, ψ = eccentric anomaly, and mean anomaly
ωt = ψ − e sinψ (Kepler’s equation).

• Useful facts: if r and v are relative coordinates of two bodies, then

E =
1

2
m1v

2

1
+

1

2
m2v

2

2
− Gm1m2

|r1 − r2|
=

1

2

m1m2

M
v2 +

1

2
Mv2

g −
Gm1m2

r
,

where M ≡ m1 +m2. Hence, since we can always set vg ≡ 0,

E

µ
=
v2

2
− GM

r
,

where µ ≡ m1m2/M = reduced mass. Also have

E = −Gm1m2

2a
,

(Cf. Goldstein), so:
1

a
=

2

r
− v2

GM
.

In addition, if h = r× v = L/µ = angular momentum per unit reduced mass, then

e =

√

1 − h2

aGM
.

Note h = rpvp = rava, where p and a denote periapse and apoapse, respectively, and

rp = (1 − e)a, ra = (1 + e)a, rp + ra = 2a.

Finally,

cos i =
hz

h
,

where i = orbital inclination wrt z = 0 plane.
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N > 2 problem

The orbit of any one planet depends on the combined motion of all the planets,

not to mention the actions of all these on each other. To consider simultaneously

all these causes of motion and to define these motions by exact laws allowing

of convenient calculation exceeds, unless I am mistaken, the forces of the entire

human intellect.—Isaac Newton 1687.

• One of the earliest N -body simulations (collision of two galaxies) used lightbulbs to
compute the forces! (Cf. Holmberg 1941, ApJ 94, 385.)
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