
Class 19. N -body Techniques, Part 2

Time-integration Schemes

• Clearly, Newton’s laws are IVP. Could use any method (Euler, RK4, etc.).

• But, issue is to balance accuracy vs. efficiency.

• Typically need many particles to capture dynamics correctly (e.g., in stellar system or
galaxy). This consideration may be as important as accuracy of any one individual
particle (exception: solar system—N ∼ 9, τ ∼ 109–1010 orbits).

• Could use Euler scheme. But we have seen it is just as easy to design 2nd-order scheme
by centering derivatives =⇒ could use leapfrog (very stable).

Practical timestep control

• The stability criterion from the discussion of stiff systems also applies to the leapfrog
integrator for the N -body problem.

• Can show need δt < 2/Ω, where Ω2 = |∇F | is a characteristic “interaction frequency”
for a particle (in practice, need δt � 2/Ω to avoid problems).

• But Ω2 is different for every particle; can be very large for particle undergoing close
interaction.

• If have to take Ωmax, can be very restrictive. Two solutions:

1. Use different timesteps for each particle (individual timesteps).

E.g., δti = ηFi/Ḟi — effective, but complex implementation, and may break
symplecticity of leapfrog (for example).

– More complex expressions for δti can be formulated, e.g., involving higher-
order derivatives of F . These are largely heuristics with convenient properties.
It is difficult to prove analytically that one formulation is superior to another.

– Sometimes δti is discretized, e.g., in factors of 2 (multistepping).

2. Eliminate short-timescale phenomena by modifying gravity on small scales.

E.g., Set δt = τD/30 and/or use softening (see below).

• Always important to check whether simulation is giving physically meaningful results.

– Handy technique: reduce timestep by factor of 2 to see if global behavior strongly
affected. If so, may have to use smaller steps.

– Beware of chaos : if state of system strongly dependent on initial conditions,
change of timestep may give seemingly vastly different results. Need to monitor
constants of motion to be sure.
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Force evaluation

• Solving the IVP requires evaluation of the RHS of the ODEs, i.e., must compute
interparticle forces.

• Will discuss PP, PM, P3M, and tree methods.

• But first must consider another practical issue, related to timestep control...

Hard interactions

• Recall F ij = −Gmj(ri − rj)/|ri − rj|
3.

• Problem: if |ri − rj| is small, |F ij | diverges, leading to timestep trouble as |vi| → ∞.

• Physically, very close encounters occur on very short timescales, e.g., can form close
binaries with very short periods.

• To alleviate problem, could use “softened” forces:

F ij = −
Gmj(ri − rj)

(|ri − rj|2 + ε2)3/2
,

where ε = “softening parameter.”

– Maximum force now ∼ Gm2/ε2.

– Physically, this eliminates possibility of forming binaries with r < ε.

∗ OK when particles represent collection of stars on similar orbits.

∗ Not OK if studying small clusters, where each particle represents an individual
star. In this case binaries can form and significantly affect evolution of entire
cluster.

• Modern methods also sometimes use “regularization.”

– Binaries (or hierarchies) replaced by pseudo-particles until interaction with other
particles becomes important.

Direct Summation (PP Method)

• Most straightforward way of evaluating Fij .

• But number of operations = 1
2
N(N − 1) ∼ N2 for N � 1 (the 1

2
comes from the fact

that Fij = −Fji.

∴ 10× more particles =⇒ 100× more work.

• Severely limits number of particles that can be used (typically . 103−4).

• Motivates finding more efficient techniques.
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Evaluating Forces on a Mesh (PM Method)

• Idea: compute forces (per unit mass) from gravitational potential:

F = −∇Φ, (1)

where Φ = potential, a scalar function of r.

• Potential given by solution of Poisson’s equation:

∇2Φ = 4πGρ. (2)

• Can FD (2) to compute Φ on a mesh, then FD (1) to compute F from Φ.

• In 1-D, Poisson equation is:
∂2Φ

∂x2
= 4πGρ.

– This is an elliptic PDE.

• Consider discretizing Φ on a mesh, center Φi and ρi, at mesh centers i = 1, ..., N .
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Then, 2nd-order FDE for (2) is:

(Φi+1−Φi)
∆x

− (Φi−Φi−1)
∆x

∆x
=

Φi−1 − 2Φi + Φi+1

(∆x)2
= 4πGρi (i = 1, ..., N). (3)

For i = 1, need Φ0

i = N, need ΦN+1

}

(boundary conditions).

• For the force, just FD (1) using the same mesh:

Fi+1/2 = −

[

Φi+1 − Φi

∆x

]

(4)

(need to interpolate to cell centers).
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