Class 21. N-body Techniques, Part 4

Tree Codes
Efficiency can be increased by grouping particles together:
Nearest particles exert greatest forces — direct summation.

Distant particles exert smallest forces — treat in groups.

Treat distant particles
<——— as one large particle
of equivalent mass

. Evaluate forces
« X « =— directly for
nearby particles.

But how do we organize particles into groups? Will sketch one method (Barnes & Hut 1986,
Nature 324, 426; also see Hernquist 1987, ApJS 64, 715), then go into more detail.
Barnes & Hut method: Overview

e The BH method is a hierarchical force-calculation algorithm:

— Place particles on mesh one at a time.

— Divide mesh into equal volume subdomains at each placement so that each particle
occupies a single subdomain. E.g., in 2-D:

1 particle 2 particles 3 particles 4 particles

5 particles 6 particles 7 particles 8 particles

& ‘s & I 6| g
.

. . .
3 3 3 3




— Now, organize particles based on nesting of subdomains:

<— Level 1

<— Level 2

<— Level 3

<— Level 4

e How does this speed up force evaluation? Consider evaluation of force on particle 1:

— If any subdomain subtends an angle § = [/d < 6. as seen from particle 1 ([ is
size of subdomain, d is distance from particle 1), then treat all particles in that
subdomain as one. E.g.,

Particle 2, 8: treat directly.
Top-left subdomain: treat as group.
— just 3 summations, instead of 7.

Barnes & Hut method: Details

e Cost of tree build depends on required depth (number of levels). For homogeneous
particle distribution (i.e., no cells empty), tree depth ~ 1 + log,r N. For k = 3, depth
~ 14 log N. .. time required to construct tree ~ O(N log N).

e Must also compute total mass and center-of-mass position = one more O(N log N)
pass through tree.

e Finally, force evaluation (“pruning”) = ~ 2¥ — 1 sums per particle at each level
= O(log N) sums per particle (depends on 6) => O(N log N) scaling < N? for
N> 1.

How bad an approximation is it?

e Consider expanding potential of cell a (e.g., Marion & Heald 1980, pp. 38-40; this
comes from Taylor series expansion of potential near origin):
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e If we choose expansion center to be center of mass of group, then ) m,r,, = 0. But
then notice that ®® = Y Gm,r,-V(1/r) = 0, so dipole vanishes. .. error term
dominated by quadrupole.

(Can also write

where

Qij = > mi(3rp 5 — 170;)
k

is the traceless quadrupole tensor, k is over the mass components, and r; is relative
to the cell center of mass. With this notation, and invoking the parallel axis theorem,
the quadrupole of a parent cell can be constructed via the quadrupoles of its daughter
cells: Q = >, Q; + >, m;(3r;r; — r?1), where i is over the daughter cells and r; is
relative to the parent center of mass.)

Often, quadrupole not needed (monopole is “good enough”).

With quadrupole, for 6., = 1, forces typically accurate to ~ 1% (in practice, keep
Ocrit < 1/\/5 = 0.7 for 2-D tree, < 1/\/3 = 0.6 for 3-D tree). This is average error;
certain pathological configurations can give much larger errors. Also, trees in general
break F” = _sz



e For high precision, might consider octopole.

— Turns out the octopole does not help convergence much—mneed to go to next
higher order, the hexadecapole!

— Obviously this means many more computations to compute force (still scales as
O(Nlog N)), but can use larger 0.

e On balance, probably never need better than hexadecapole.

Barnes & Hut method: Pseudocode

Define a node struct: contains size, center, mass, position, Q, etc. of cell, plus info on
subcells (may be nodes). Following example stores only monopole (i.e., total mass).

Tree build — start with special cell (“root”)

start
root = new node [includes initialization]
loop over particles 1
put_in_tree(i,root)
calc_moments(root)

function put_in_tree(particle,node)
to which (sub)cell does particle belong?
is cell...
...empty? : make particle a leaf in cell
break
...a leaf? : make cell a node
cell = new node
put_in_tree(leaf,cell)
...a node? : put_in_tree(particle,cell)

function calc_moments (node)
[loop over non-empty (sub)cells
is cell...
...a leaf? : node->mass += cell.leaf->mass
node->pos += (cell.leaf->mass)*(cell.leaf->pos)
break
...a node? : calc_moments(cell.node)
node->mass += cell.node->mass
node->pos += (cell.node->mass)*(cell.node->pos)
]

node->pos /= node->mass



Tree walk — start at root

function add_to_force(pos,node,force)
theta = (node->size)/(distance to node)
theta < theta_crit? : multipole_expansion(pos,node,force) ["prune"]

else : [loop over non-empty (sub)cells
is cell...
...a leaf? : direct_force(pos,cell.leaf,force)
break

...a node? : add_to_force(pos,cell.node,force)

Other Types of Trees

e Differ primarily in organization of particle information.

Mutually nearest neighbour

e E.g.. Appel 1981, Jernigan 1985, Porter 1985.

e Given N particles, two nearest joined together — node, leaving N — 1 entities (N — 2
particles plus 1 node) in list.

e Node contains total mass and center-of-mass position of cluster.
e Repeat until only 1 cluster remains.

e O(logy N) levels (binary tree), O(N log N) update time.

e Advantage: Preserves physical proximity of particles (binaries). Can also let particles
“drift” a while before update.

e Disadvantage: Arbitrary node shapes, hard to estimate error when expanding poten-
tials.

k-D tree (recursively bisect longest dimension)

e E.g., Olson & Packer 1996.

e First determine dimension (z, y, or z) that spans largest spatial range of particle
distribution.



Sort data on this dimension and divide into halves containing equal numbers of parti-
cles.

Repeat with sublists until each contains only 1 particle.

Often used for “domain decomposition” to balance work between multiple processors.

Advantage: No empty cells, more efficient shape.

Disadvantage: Extreme oblong shapes — larger error.

Fast Multipole Method

Improved tree walking/pruning,.

In principle can achieve O(N) scaling, and momentum conservation (!), but complex
implementation.

Idea is that local information is passed up the tree so it can be swapped with distant
nodes: mutual multipole expansion (postal service analogy).

Cutting edge of tree code development, much of it done here at U Maryland (Computer
Science)!

Summary

PP method (direct summation) — most accurate, but O(N?).
PM method — O(NN, log N,), but resolution limited.
Tree codes — O(N log N), but sometimes difficult to implement.

Also: PP-PM = P3M — direct summation over nearby particles, use grid for distant
interactions.



