
Class 21. N -body Techniques, Part 4

Tree Codes

Efficiency can be increased by grouping particles together:

Nearest particles exert greatest forces → direct summation.

Distant particles exert smallest forces → treat in groups.

Evaluate forces
directly for
nearby particles.

Treat distant particles
as one large particle
of equivalent mass

But how do we organize particles into groups? Will sketch one method (Barnes & Hut 1986,
Nature 324, 426; also see Hernquist 1987, ApJS 64, 715), then go into more detail.

Barnes & Hut method: Overview

• The BH method is a hierarchical force-calculation algorithm:

– Place particles on mesh one at a time.

– Divide mesh into equal volume subdomains at each placement so that each particle
occupies a single subdomain. E.g., in 2-D:
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– Now, organize particles based on nesting of subdomains:
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• How does this speed up force evaluation? Consider evaluation of force on particle 1:

– If any subdomain subtends an angle θ = l/d < θcrit as seen from particle 1 (l is
size of subdomain, d is distance from particle 1), then treat all particles in that
subdomain as one. E.g.,

Particle 2, 8: treat directly.

Top-left subdomain: treat as group.

=⇒ just 3 summations, instead of 7.

Barnes & Hut method: Details

• Cost of tree build depends on required depth (number of levels). For homogeneous
particle distribution (i.e., no cells empty), tree depth # 1 + log2k N . For k = 3, depth
∼ 1 + log N . ∴ time required to construct tree ∼ O(N log N).

• Must also compute total mass and center-of-mass position =⇒ one more O(N log N)
pass through tree.

• Finally, force evaluation (“pruning”) =⇒ ∼ 2k − 1 sums per particle at each level
=⇒ O(log N) sums per particle (depends on θcrit) =⇒ O(N log N) scaling & N2 for
N ' 1.

How bad an approximation is it?

• Consider expanding potential of cell α (e.g., Marion & Heald 1980, pp. 38–40; this
comes from Taylor series expansion of potential near origin):
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Φ(2l) ≡ (−1)(l+1)

l!

∑

α

Gmα

∑

i,j,...,l

x′
α,ix

′
α,j · · · x′

α,l

∂l

∂xi∂xj · · · ∂xl

(
1

r

)
is the “2l-pole”.

• If we choose expansion center to be center of mass of group, then
∑

α mαr′α = 0. But
then notice that Φ(2) =

∑
α Gmαr′α·∇(1/r) = 0, so dipole vanishes. ∴ error term

dominated by quadrupole.

• (Can also write

Φ = −GM
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where
Qij =

∑

k

mk(3xk,ixk,j − r2
kδij)

is the traceless quadrupole tensor, k is over the mass components, and rk is relative
to the cell center of mass. With this notation, and invoking the parallel axis theorem,
the quadrupole of a parent cell can be constructed via the quadrupoles of its daughter
cells: Q =

∑
i Qi +

∑
i mi(3riri − r2

i 1), where i is over the daughter cells and ri is
relative to the parent center of mass.)

• Often, quadrupole not needed (monopole is “good enough”).

• With quadrupole, for θcrit = 1, forces typically accurate to ∼ 1% (in practice, keep
θcrit < 1/

√
2 = 0.7 for 2-D tree, < 1/

√
3 = 0.6 for 3-D tree). This is average error;

certain pathological configurations can give much larger errors. Also, trees in general
break Fij = −Fji...
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• For high precision, might consider octopole.

– Turns out the octopole does not help convergence much—need to go to next
higher order, the hexadecapole!

– Obviously this means many more computations to compute force (still scales as
O(N log N)), but can use larger θcrit.

• On balance, probably never need better than hexadecapole.

Barnes & Hut method: Pseudocode

Define a node struct: contains size, center, mass, position, Q, etc. of cell, plus info on
subcells (may be nodes). Following example stores only monopole (i.e., total mass).

Tree build — start with special cell (“root”)

start
root = new node [includes initialization]
loop over particles i

put_in_tree(i,root)
calc_moments(root)

function put_in_tree(particle,node)
to which (sub)cell does particle belong?
is cell...

...empty? : make particle a leaf in cell
break

...a leaf? : make cell a node
cell = new node
put_in_tree(leaf,cell)

...a node? : put_in_tree(particle,cell)

function calc_moments(node)
[loop over non-empty (sub)cells
is cell...

...a leaf? : node->mass += cell.leaf->mass
node->pos += (cell.leaf->mass)*(cell.leaf->pos)
break

...a node? : calc_moments(cell.node)
node->mass += cell.node->mass
node->pos += (cell.node->mass)*(cell.node->pos)

]
node->pos /= node->mass
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Tree walk — start at root

function add_to_force(pos,node,force)
theta = (node->size)/(distance to node)
theta < theta_crit? : multipole_expansion(pos,node,force) ["prune"]

else : [loop over non-empty (sub)cells
is cell...

...a leaf? : direct_force(pos,cell.leaf,force)
break

...a node? : add_to_force(pos,cell.node,force)
]

Other Types of Trees

• Differ primarily in organization of particle information.

Mutually nearest neighbour

• E.g., Appel 1981, Jernigan 1985, Porter 1985.

• Given N particles, two nearest joined together → node, leaving N − 1 entities (N − 2
particles plus 1 node) in list.

• Node contains total mass and center-of-mass position of cluster.

• Repeat until only 1 cluster remains.

• O(log2 N) levels (binary tree), O(N log N) update time.

• Advantage: Preserves physical proximity of particles (binaries). Can also let particles
“drift” a while before update.

• Disadvantage: Arbitrary node shapes, hard to estimate error when expanding poten-
tials.

k-D tree (recursively bisect longest dimension)

• E.g., Olson & Packer 1996.

• First determine dimension (x, y, or z) that spans largest spatial range of particle
distribution.
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• Sort data on this dimension and divide into halves containing equal numbers of parti-
cles.

• Repeat with sublists until each contains only 1 particle.

• Often used for “domain decomposition” to balance work between multiple processors.

• Advantage: No empty cells, more efficient shape.

• Disadvantage: Extreme oblong shapes → larger error.

Fast Multipole Method

• Improved tree walking/pruning.

• In principle can achieve O(N) scaling, and momentum conservation (!), but complex
implementation.

• Idea is that local information is passed up the tree so it can be swapped with distant
nodes: mutual multipole expansion (postal service analogy).

• Cutting edge of tree code development, much of it done here at U Maryland (Computer
Science)!

Summary

• PP method (direct summation) — most accurate, but O(N2).

• PM method — O(Ng log Ng), but resolution limited.

• Tree codes — O(N log N), but sometimes difficult to implement.

• Also: PP-PM = P3M — direct summation over nearby particles, use grid for distant
interactions.
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