Class 21. N-body Techniques, Part 4

Tree Codes

Efficiency can be increased by grouping particles together:

Nearest particles exert greatest forces \rightarrow direct summation.

Distant particles exert smallest forces \rightarrow treat in groups.

But how do we organize particles into groups? Will sketch one method (Barnes & Hut 1986, *Nature* **324**, 426; also see Hernquist 1987, ApJS **64**, 715), then go into more detail.

Barnes & Hut method: Overview

- The BH method is a hierarchical force-calculation algorithm:
 - Place particles on mesh one at a time.
 - Divide mesh into equal volume subdomains at each placement so that each particle occupies a single subdomain. E.g., in 2-D:

- Now, organize particles based on nesting of subdomains:

- How does this speed up force evaluation? Consider evaluation of force on particle 1:
 - If any subdomain subtends an angle $\theta = l/d < \theta_{\text{crit}}$ as seen from particle 1 (*l* is size of subdomain, *d* is distance from particle 1), then treat all particles in that subdomain as one. E.g.,

Particle 2, 8: treat directly. Top-left subdomain: treat as group. \implies just 3 summations, instead of 7.

Barnes & Hut method: Details

- Cost of tree build depends on required depth (number of levels). For homogeneous particle distribution (i.e., no cells empty), tree depth $\simeq 1 + \log_{2^k} N$. For k = 3, depth $\sim 1 + \log N$. \therefore time required to construct tree $\sim \mathcal{O}(N \log N)$.
- Must also compute total mass and center-of-mass position \implies one more $\mathcal{O}(N \log N)$ pass through tree.
- Finally, force evaluation ("pruning") $\implies \sim 2^k 1$ sums per particle at each level $\implies \mathcal{O}(\log N)$ sums per particle (depends on $\theta_{\text{crit}}) \implies \mathcal{O}(N \log N)$ scaling $\ll N^2$ for $N \gg 1$.

How bad an approximation is it?

• Consider expanding potential of cell α (e.g., Marion & Heald 1980, pp. 38–40; this comes from Taylor series expansion of potential near origin):

$$\Phi_{\alpha} = -\frac{Gm_{\alpha}}{r} + Gm_{\alpha}\sum_{i} x'_{\alpha,i} \frac{\partial}{\partial x_{i}} \left(\frac{1}{r}\right) - \frac{Gm_{\alpha}}{2}\sum_{i,j} x'_{\alpha,i} x'_{\alpha,j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \left(\frac{1}{r}\right) + \cdots$$

 \mathbf{SO}

$$\Phi = \sum_{\alpha} \Phi_{\alpha} = \Phi^{(1)} + \Phi^{(2)} + \Phi^{(4)} + \dots + \Phi^{(2^{l})} + \dots$$

where

$$\begin{split} \Phi^{(1)} &\equiv -\sum_{\alpha} \frac{Gm_{\alpha}}{r} = -\frac{GM}{r} \text{ is the "monopole"}, \\ \Phi^{(2)} &\equiv \sum_{\alpha} Gm_{\alpha} \sum_{i} x'_{\alpha,i} \frac{\partial}{\partial x_{i}} \left(\frac{1}{r}\right) \text{ is the "dipole"}, \\ \Phi^{(4)} &\equiv -\frac{1}{2} \sum_{\alpha} Gm_{\alpha} \sum_{i,j} x'_{\alpha,i} x'_{\alpha,j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \left(\frac{1}{r}\right) \text{ is the "quadrupole"}, \\ \Phi^{(2^{l})} &\equiv \frac{(-1)^{(l+1)}}{l!} \sum_{\alpha} Gm_{\alpha} \sum_{i,j,\dots,l} x'_{\alpha,i} x'_{\alpha,j} \cdots x'_{\alpha,l} \frac{\partial^{l}}{\partial x_{i} \partial x_{j} \cdots \partial x_{l}} \left(\frac{1}{r}\right) \text{ is the "2^{l}-pole"}. \end{split}$$

- If we choose expansion center to be center of mass of group, then $\sum_{\alpha} m_{\alpha} \mathbf{r}'_{\alpha} = 0$. But then notice that $\Phi^{(2)} = \sum_{\alpha} Gm_{\alpha} \mathbf{r}'_{\alpha} \cdot \nabla(1/r) = 0$, so dipole vanishes. \therefore error term dominated by quadrupole.
- (Can also write

$$\Phi = -\frac{GM}{r} - \frac{1}{2}\frac{G}{r^5}(\mathbf{r}\mathbf{Q}\mathbf{r}),$$

where

$$Q_{ij} = \sum_{k} m_k (3x_{k,i}x_{k,j} - r_k^2 \delta_{ij})$$

is the traceless quadrupole tensor, k is over the mass components, and \mathbf{r}_k is relative to the cell center of mass. With this notation, and invoking the parallel axis theorem, the quadrupole of a parent cell can be constructed via the quadrupoles of its daughter cells: $\mathbf{Q} = \sum_i \mathbf{Q}_i + \sum_i m_i (3\mathbf{r}_i \mathbf{r}_i - r_i^2 \mathbf{1})$, where *i* is over the daughter cells and \mathbf{r}_i is relative to the parent center of mass.)

- Often, quadrupole not needed (monopole is "good enough").
- With quadrupole, for $\theta_{\rm crit} = 1$, forces typically accurate to ~ 1% (in practice, keep $\theta_{\rm crit} < 1/\sqrt{2} = 0.7$ for 2-D tree, $< 1/\sqrt{3} = 0.6$ for 3-D tree). This is *average* error; certain pathological configurations can give much larger errors. Also, trees in general break $\mathbf{F}_{ij} = -\mathbf{F}_{ji}...$

- For high precision, might consider octopole.
 - Turns out the octopole does *not* help convergence much—need to go to next higher order, the hexadecapole!
 - Obviously this means many more computations to compute force (still scales as $\mathcal{O}(N \log N)$), but can use larger θ_{crit} .
- On balance, probably *never* need better than hexadecapole.

Barnes & Hut method: Pseudocode

Define a node struct: contains size, center, mass, position, \mathbf{Q} , etc. of cell, plus info on subcells (may be nodes). Following example stores only monopole (i.e., total mass).

<u>Tree build</u> — start with special cell ("root")

```
start
   root = new node [includes initialization]
   loop over particles i
      put_in_tree(i,root)
   calc_moments(root)
function put_in_tree(particle,node)
   to which (sub)cell does particle belong?
   is cell...
      ... empty? : make particle a leaf in cell
                   break
      ...a leaf? : make cell a node
                   cell = new node
                   put_in_tree(leaf,cell)
      ...a node? : put_in_tree(particle,cell)
function calc_moments(node)
  [loop over non-empty (sub)cells
   is cell...
      ...a leaf? : node->mass += cell.leaf->mass
                   node->pos += (cell.leaf->mass)*(cell.leaf->pos)
                   break
      ...a node? : calc_moments(cell.node)
                   node->mass += cell.node->mass
                   node->pos += (cell.node->mass)*(cell.node->pos)
  ]
   node->pos /= node->mass
```

```
<u>Tree walk</u> — start at root
```

Other Types of Trees

• Differ primarily in organization of particle information.

Mutually nearest neighbour

- E.g., Appel 1981, Jernigan 1985, Porter 1985.
- Given N particles, two nearest joined together \rightarrow node, leaving N-1 entities (N-2) particles plus 1 node) in list.
- Node contains total mass and center-of-mass position of cluster.
- Repeat until only 1 cluster remains.
- $\mathcal{O}(\log_2 N)$ levels (binary tree), $\mathcal{O}(N \log N)$ update time.

- Advantage: Preserves physical proximity of particles (binaries). Can also let particles "drift" a while before update.
- Disadvantage: Arbitrary node shapes, hard to estimate error when expanding potentials.

k-D tree (recursively bisect longest dimension)

- E.g., Olson & Packer 1996.
- First determine dimension (x, y, or z) that spans largest spatial range of particle distribution.

- Sort data on this dimension and divide into halves containing equal numbers of particles.
- Repeat with sublists until each contains only 1 particle.
- Often used for "domain decomposition" to balance work between multiple processors.

- Advantage: No empty cells, more efficient shape.
- Disadvantage: Extreme oblong shapes \rightarrow larger error.

Fast Multipole Method

- Improved tree walking/pruning.
- In principle can achieve $\mathcal{O}(N)$ scaling, and momentum conservation (!), but complex implementation.
- Idea is that local information is passed *up* the tree so it can be swapped with distant nodes: mutual multipole expansion (postal service analogy).
- Cutting edge of tree code development, much of it done here at U Maryland (Computer Science)!

Summary

- PP method (direct summation) most accurate, but $\mathcal{O}(N^2)$.
- PM method $\mathcal{O}(N_g \log N_g)$, but resolution limited.
- Tree codes $\mathcal{O}(N \log N)$, but sometimes difficult to implement.
- Also: PP-PM = P^3M direct summation over nearby particles, use grid for distant interactions.