Class 22. PDEs, Part 1

e Cf. NRiC §19.

Classification of PDEs

e A PDE is simply a differential equation of more than one variable (so an ODE is a
special case of a PDE). PDEs are usually classified into three types:
1. Hyperbolic (second or first order in time and space)

— Prototype is the wave equation:
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(this is the 1-D version), where v = (constant) wave speed and u = amplitude.

2. Parabolic (first order in time, second order in space)

— Prototype is the diffusion equation:
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(1-D), where D = diffusion coefficient, u = amplitude.
3. Elliptic (second order in space)

— Prototype is the Poisson equation:
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(3-D), where p = density (if p = 0, get Laplace equation).

e Note that (1) and (2) define initial value problems. If u(x) (and perhaps du/0x) defined
at t = to, then equations define how u(z,t) propagates forward in time. .". numerical
solutions of (1) and (2) give time evolution of u (e.g., wave amplitude).

e On the other hand, (3) defines a boundary value problem. Given static function p, find
static solution u satisfying BCs. .. numerical solution of (3) gives space distribution of
u (e.g., gravitational potential).

e Distinction between IVPs vs. BVPs more important than distinction between (1) and
(2). Often, IVPs are mixture of hyperbolic and parabolic.



Solving Elliptic PDEs (BVP)

e Already discussed this at length for PM codes: finite differencing yields large set of
coupled algebraic equations = large sparse banded matrix.

e Many techniques for solving matrix:

1. Relaxation schemes.
2. Sparse banded matrix solvers.

3. Fourier methods.

e Use #3 when you can, #1 or #2 otherwise.

Solving Hyperbolic PDEs (IVP)
o NRiC §19.1.

e Overriding concern is stability of algorithm.

Conservative form

e Large class of IVP can be put in “flux-conservative” form:
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where F' = flux of conserved quantity. In multidimensions,
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(this is in the form of a conservation law).

e For example, prototypical hyperbolic PDE
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(v constant) can be decomposed into two first-order equations:
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(E.F.T.S.: show that these two equations do indeed combine to give the original second-
order equation.) Then let

a= (7). Fw=( 0 )= ()

Plugging these into the conservative form (4) gives the decomposed version of the PDE.



The scalar advection equation

e If we can cast our hyperbolic PDE into conservative form, then all we need to do is
develop numerical solution strategies for the first-order equations, which can usually
be written in the form:
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(v still constant). We happen to already know the analytical solution is u = f(z — vt),
i.e., function f displaced by vt,!
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but we do not necessarily know the exact form of f. Equation (5) is a scalar advection
equation (the quantity w is transported by a “fluid flow” with a speed v).

e Best example of (5) in astrophysics is continuity equation, i.e., conservation law for
some quantity with density p. Evolution of p (in 1-D) obeys
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if [ple = constant, i.e., material conserved. Describes how material is mixed in ISM,
how mass is transported. One of the equations of fluid dynamics.

Forward time centered space (FTCS) scheme

e How can we construct a numerical solution to (5)7

e Try simple Euler differencing:
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This is first order in time and second order in space. Leads to the forward time centered
space (FTCS) scheme.

1To see this, let w = z — vt and differentiate u = f(w) using the chain rule: df /0t = (9f /Ow)(dw/dt) =
—v(0f /Ow); —v(0f/0x) = —v(0f /Ow)(Ow/0x) = —v(Df/Ow).



e Schematically:
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e Explicit in time (just solve for u]

e What about stability of scheme?

von Neumann stability analysis
e To check stability, customary to perform a von Neumann stability analysis.
e Treat all coefficients of difference equations as constant in x and t (local analysis).
e Then, eigenmodes of difference equations all of form
W= gneikite (7)
where £(k) is the (complex) amplitude.?

e The point is that the ¢ dependence of w; is just £ raised to the n™ power. So if |¢(k)| > 1
for some k, scheme is unstable. £ is called the amplification factor.

e Substitute (7) into (6), divide by £, get (E.F.T.S.):
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Note [£(k)| > 1 for all k. . FTCS is unconditionally unstable. Too bad. Simple scheme
gives garbage.

Lax scheme
e How do we fix it?

e Replace forward Euler time derivative:
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where we have substituted the average value of v ; and uf,, for u7.

2Formally, the eigenmodes can be obtained from Fourier analysis of the finite-difference equations, but
this is beyond our scope.



e Schematically:
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called the Lax scheme.
e von Neumann stability analysis of (8) gives (E.F.T.S.)
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which, for [§(k)| < 1, requires
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Equation (9) is the Courant condition (or CFL condition, for Courant-Friedrichs-
Lewy).

Intuitively, the Courant condition can be thought of as limiting domain over which
information can propagate in one timestep to be less than one gridzone, i.e., Az >
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e Simple change in ¢ derivative makes FTCS stable. Why? Write (8) in form of (6) with
remainder term:
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But this is just FTCS representation of
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diffusion term

e Adding diffusion stabilizes scheme: diffusion damps short wavelengths (kAz ~ 1),
leaves large wavelengths unaffected. This is called numerical dissipation or numerical
VISCOSILY.

e Damping short scales not as bad as instability!



