
Class 22. PDEs, Part 1

• Cf. NRiC §19.

Classification of PDEs

• A PDE is simply a differential equation of more than one variable (so an ODE is a
special case of a PDE). PDEs are usually classified into three types:

1. Hyperbolic (second or first order in time and space)

– Prototype is the wave equation:

∂2u

∂t2
= v2∂2u

∂x2
(1)

(this is the 1-D version), where v = (constant) wave speed and u = amplitude.

2. Parabolic (first order in time, second order in space)

– Prototype is the diffusion equation:

∂u

∂t
=

∂

∂x

(

D
∂u

∂x

)

(2)

(1-D), where D = diffusion coefficient, u = amplitude.

3. Elliptic (second order in space)

– Prototype is the Poisson equation:

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= ρ (3)

(3-D), where ρ = density (if ρ = 0, get Laplace equation).

• Note that (1) and (2) define initial value problems. If u(x) (and perhaps ∂u/∂x) defined
at t = t0, then equations define how u(x, t) propagates forward in time. ∴ numerical
solutions of (1) and (2) give time evolution of u (e.g., wave amplitude).

• On the other hand, (3) defines a boundary value problem. Given static function ρ, find
static solution u satisfying BCs. ∴ numerical solution of (3) gives space distribution of
u (e.g., gravitational potential).

• Distinction between IVPs vs. BVPs more important than distinction between (1) and
(2). Often, IVPs are mixture of hyperbolic and parabolic.
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Solving Elliptic PDEs (BVP)

• Already discussed this at length for PM codes: finite differencing yields large set of
coupled algebraic equations =⇒ large sparse banded matrix.

• Many techniques for solving matrix:

1. Relaxation schemes.

2. Sparse banded matrix solvers.

3. Fourier methods.

• Use #3 when you can, #1 or #2 otherwise.

Solving Hyperbolic PDEs (IVP)

• NRiC §19.1.

• Overriding concern is stability of algorithm.

Conservative form

• Large class of IVP can be put in “flux-conservative” form:

∂u

∂t
= −

∂F(u)

∂x
, (4)

where F = flux of conserved quantity. In multidimensions,

∂u

∂t
= −∇ · F

(this is in the form of a conservation law).

• For example, prototypical hyperbolic PDE

∂2u

∂t2
= v2 ∂2u

∂x2

(v constant) can be decomposed into two first-order equations:

∂r

∂t
= v

∂s

∂x
,

∂s

∂t
= v

∂r

∂x
,

where

r ≡ v
∂u

∂x
, s ≡

∂u

∂t
.

(E.F.T.S.: show that these two equations do indeed combine to give the original second-
order equation.) Then let

u =

(
r
s

)

, F(u) =

(
0 −v

−v 0

)

u =

(
−vs
−vr

)

.

Plugging these into the conservative form (4) gives the decomposed version of the PDE.
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The scalar advection equation

• If we can cast our hyperbolic PDE into conservative form, then all we need to do is
develop numerical solution strategies for the first-order equations, which can usually
be written in the form:

∂u

∂t
= −v

∂u

∂x
(5)

(v still constant). We happen to already know the analytical solution is u = f(x− vt),
i.e., function f displaced by vt,1

x
0 x

0 + vt

> 0t= 0t

but we do not necessarily know the exact form of f . Equation (5) is a scalar advection

equation (the quantity u is transported by a “fluid flow” with a speed v).

• Best example of (5) in astrophysics is continuity equation, i.e., conservation law for
some quantity with density ρ. Evolution of ρ (in 1-D) obeys

∂ρ

∂t
+ v

∂ρ

∂x
= 0

if
∫

ρdx = constant, i.e., material conserved. Describes how material is mixed in ISM,
how mass is transported. One of the equations of fluid dynamics.

Forward time centered space (FTCS) scheme

• How can we construct a numerical solution to (5)?

• Try simple Euler differencing:

un+1
j − un

j

∆t
= −v

(
un

j+1 − un
j−1

2∆x

)

. (6)

This is first order in time and second order in space. Leads to the forward time centered

space (FTCS) scheme.

1To see this, let w = x− vt and differentiate u = f(w) using the chain rule: ∂f/∂t = (∂f/∂w)(∂w/∂t) =
−v(∂f/∂w); −v(∂f/∂x) = −v(∂f/∂w)(∂w/∂x) = −v(∂f/∂w).
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• Schematically:

new point

known points

t

x
−1 +1j jj

+1n

n

• Explicit in time (just solve for un+1
j ).

• What about stability of scheme?

von Neumann stability analysis

• To check stability, customary to perform a von Neumann stability analysis.

• Treat all coefficients of difference equations as constant in x and t (local analysis).

• Then, eigenmodes of difference equations all of form

un
j = ξneikj∆x, (7)

where ξ(k) is the (complex) amplitude.2

• The point is that the t dependence of uj is just ξ raised to the nth power. So if |ξ(k)| > 1
for some k, scheme is unstable. ξ is called the amplification factor.

• Substitute (7) into (6), divide by ξn, get (E.F.T.S.):

ξ(k) = 1 − i
v∆t

∆x
sin k∆x.

Note |ξ(k)| > 1 for all k. ∴ FTCS is unconditionally unstable. Too bad. Simple scheme
gives garbage.

Lax scheme

• How do we fix it?

• Replace forward Euler time derivative:

∂u

∂t
→

un+1
j − 1

2
(un

j−1 + un
j+1)

∆t
,

where we have substituted the average value of un
j−1 and un

j+1 for un
j .

2Formally, the eigenmodes can be obtained from Fourier analysis of the finite-difference equations, but
this is beyond our scope.

4



• Schematically:

new point

known points

t

x
−1 +1j jj

+1n

n

• FDE becomes

un+1
j =

1

2
(un

j−1 + un
j+1) −

v∆t

2∆x
(un

j+1 − un
j−1), (8)

called the Lax scheme.

• von Neumann stability analysis of (8) gives (E.F.T.S.)

ξ(k) = cos k∆x − i
v∆t

∆x
sin k∆x,

which, for |ξ(k)| ≤ 1, requires
|v|∆t

∆x
≤ 1. (9)

• Equation (9) is the Courant condition (or CFL condition, for Courant-Friedrichs-
Lewy).

• Intuitively, the Courant condition can be thought of as limiting domain over which
information can propagate in one timestep to be less than one gridzone, i.e., ∆x ≥
|v|∆t:

∆x

+v −v +v −v

Unstable

∆

Stable

t

• Simple change in t derivative makes FTCS stable. Why? Write (8) in form of (6) with
remainder term:

un+1
j − un

j

∆t
= −v

(
un

j+1 − un
j−1

2∆x

)

+
1

2

(
un

j+1 − 2un
j + un

j−1

∆t

)

.
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But this is just FTCS representation of

∂u

∂t
= −v

∂u

∂x
+

(∆x)2

2∆t

∂2u

∂x2
︸ ︷︷ ︸

diffusion term

.

• Adding diffusion stabilizes scheme: diffusion damps short wavelengths (k∆x ∼ 1),
leaves large wavelengths unaffected. This is called numerical dissipation or numerical

viscosity.

• Damping short scales not as bad as instability!
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