
Class 23. PDEs, Part 2

Solving Hyperbolic PDEs, Continued

Upwind differencing

• In addition to amplitude errors (instability or damping), scheme may also have phase

errors (dispersion) or transport errors (spurious transport of information).

• Upwind differencing helps reduce transport errors:
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where here we’ve supposed that v is not constant, for illustration.

• Schematically, only use information upwind of grid point j to construct differences:
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• Upwind difference is only first order in space. Still, it has lower transport error than
second-order centered difference. Better? Can construct higher-order upwind difference
schemes...

Second-order accuracy in time

• We have been dealing with two derivatives, ∂/∂x and ∂/∂t. We have constructed
higher-order schemes in space. What about t?

• Staggered leapfrog is 2nd-order in time:
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But, subject to a mesh-drift instability. Think of space-time discretization:

– Odd-integer n coupled to even-integer j,

– Even-integer n coupled to odd-integer j

(“red-black” ordering; odd and even mesh points decoupled). Schematically,
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Can be fixed by adding diffusion to couple grid points (add ε(F n
j−1−2F n

j +F n
j+1), ε � 1

to RHS).

• Two-step Lax-Wendroff: another 2nd-order scheme.

1. Use Lax step to estimate fluxes at n + 1
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2. Using these half-step values of u, calculate F (u
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3. Then use leapfrog to get updated values:

un+1
j = un

j −
∆t

∆x

(

F
n+1/2

j+1/2
− F

n+1/2

j−1/2

)

.

Schematically,
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Fixes dissipation and mesh drifting but introduces phase error (dispersion). Often
first-order upwind scheme is as good as/better than 2nd-order L-W.
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Summary: Hyperbolic methods

• Many IVPs can be cast in flux-conservative form.

• Solving methods:

1. FTCS — unconditionally unstable. Never use.

2. Lax — equivalent to adding diffusion, damps small scales.

3. Upwind differencing — reduces transport errors, but only 1st-order in space.

4. Staggered leapfrog — 2nd-order in time, but subject to mesh-drift instability. Fix
with diffusion.

5. Two-step Lax-Wendroff — 2nd-order in time, but suffers from phase error.

• NRiC recommends staggered leapfrog (presumably with diffusion), particularly for
problems related to the wave equation.

• For problems sensitive to transport errors, NRiC recommends upwind differencing
schemes.

Solving Parabolic PDEs (Diffusive IVPs)

• NRiC §19.2.

• Prototypical parabolic PDE is diffusion equation:

∂u

∂t
= D

∂2u

∂x2
,

where we have taken D > 0 to be constant (D = 0 is trivial and D < 0 leads to
physically unstable solutions).

• Consider FTCS differencing:
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• von Neumann analysis gives (E.F.T.S.)
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This is stable provided (E.F.T.S.)
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The 2nd derivative makes all the difference (we saw adding diffusion via the Lax method
stabilizes FTCS for the hyperbolic equation).
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• Diffusion time over scale L is τD ∼ L2/D. So stability criterion says ∆t . τD/2 across
one cell.

• Often interested in evolution of time scales � τD of one cell. How can we build stable
scheme for larger ∆t?

Implicit differencing

• Evaluate RHS of difference equation at n + 1:
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• To solve this, rewrite as:
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where α ≡ D∆t/(∆x)2.

– In 1-D, this is a tri-di matrix.

– In 3-D, get large, sparse, banded matrix.

– Solve the usual way.

• What is limit of (1) as ∆t → ∞ (α → ∞)? Divide through by α to find FD form of
∂2u/∂x2 = 0, i.e., static solution.

• Fully implicit scheme is unconditionally stable (E.F.T.S.) and gives correct equilibrium
structure, but cannot be used to follow small-timescale phenomena.

Crank-Nicholson differencing

• Form average of explicit and implicit schemes (in space):
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• Unconditionally stable (E.F.T.S.), 2nd-order accurate in time (both sides centered at
n + 1/2).

• Schematically,
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Explicit (FTCS) Fully Implicit Crank−Nicholson

(1st−order stable for small dt) (1st−order stable for all dt) (2nd−order stable for all dt)
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• “Freezes” small-scale phenomena. Can use fully implicit scheme at end to drive fluc-
tuations to equilibrium.

Nonlinear diffusion problems

• For nonlinear diffusion problems, e.g., where D = D(x), then implicit differencing more
complex.

• Must linearize system and use iterative methods.
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