## Class 24. Fluid Dynamics, Part 1

- The equations of fluid dynamics are coupled PDEs that form an IVP (hyperbolic).
- Use the techniques described so far, plus additions.

## Fluid Dynamics in Astrophysics

- Whenever mean free path  $\lambda \ll$  problem scale L in a plasma, can use continuum equations to describe evolution of macroscopic variables, e.g., density, pressure, etc.
- Mathematically,

$$\lambda \simeq \frac{1}{\sigma n} \sim \frac{10^{16}}{[n/1 \text{ cm}^{-3}]} \text{ cm},$$

where  $\sigma$  = classical cross-section of atom or ion (~  $\pi r_{\text{Bohr}}^2$ ).

• Where is  $\lambda \ll L$  in astrophysics?

| Medium               | $\sim n \; (\mathrm{cm}^{-3})$ | $\sim \lambda \ ({\rm cm})$ | $\sim L \ ({\rm cm})$ | Scale           |
|----------------------|--------------------------------|-----------------------------|-----------------------|-----------------|
| planetary atmosphere | $10^{20}$                      | $10^{-4}$                   | $10^{2-3}$            | 110  m          |
| stellar interior     | $10^{24}$                      | $10^{-8}$                   | $10^{11}$             | $1~R_{\odot}$   |
| protoplanetary disk  | $10^{10}$                      | $10^{6}$                    | $10^{13}$             | $1 \mathrm{AU}$ |
| GMC                  | 10                             | $10^{15}$                   | $10^{19}$             | 10  pc          |
| diffuse ISM          | 1                              | $10^{16}$                   | $10^{20}$             | 100  pc         |
| cluster gas          | 0.1                            | $10^{17}$                   | $10^{22}$             | $10 \ \rm kpc$  |
| universe             | $10^{-6}$                      | $10^{22}$                   | $> 10^{24}$           | > 1  Mpc        |

- What would we like to learn from studying fluid dynamics?
  - 1. Steady-state structure of certain fluid flows, e.g., C-shocks ("continuous").
  - 2. Time evolution of system, e.g.,
    - Propagation of shock through clumpy medium.
    - Accretion flow onto protostar or black hole.
    - Formation of structure in universe.
  - 3. Growth and saturation of instabilities, e.g.,
    - Rayleigh-Taylor:



- \* Important in SN explosions, ISM, etc.
- Kelvin-Helmholtz:



- \* Important in jets and outflows in ISM.
- To study these phenomena, must use equations of fluid dynamics.

## **Equations of Fluid Dynamics**

1. Continuity equation:

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \mathbf{v}) = 0, \tag{1}$$

where  $\rho = \text{mass density}$ ,  $\mathbf{v} = \text{velocity}$ , and  $\mathbf{\nabla} = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$ .

• Sometimes see this written as:

$$\frac{D\rho}{Dt} = -\rho \nabla \cdot \mathbf{v}$$

where  $\frac{D}{Dt} \equiv \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla$  = Lagrangian or co-moving or substantive derivative (rate of change of  $\rho$  in fluid frame, as opposed to  $\frac{\partial}{\partial t}$  = Eulerian derivative, rate of change in lab frame).

• For an incompressible fluid,  $\rho$  is constant in space and time, so the continuity equation reduces to:

$$\nabla \cdot \mathbf{v} = 0.$$

- The continuity equation is a statement of *mass conservation*.
- 2. Euler's equation (equation of motion):

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \frac{\mathbf{F}}{\rho} - \frac{1}{\rho} \nabla p, \qquad (2)$$

where p = pressure and  $\mathbf{F} = \text{any external force}$  (other than gas pressure) acting on a unit volume.

• More compactly,

$$\rho \frac{D\mathbf{v}}{Dt} = \mathbf{F} - \boldsymbol{\nabla} p.$$

- For gravity, have  $\mathbf{F} = -\rho \nabla \phi$ , where  $\nabla^2 \phi = 4\pi G\rho$ . In hydrostatic equilibrium,  $\mathbf{F} = \nabla p$ , so there is no mass flow. E.g., in 1-D, have  $dp/dr = -\rho GM(r)/r^2 = -g\rho$ , where g = gravitational acceleration.
- For viscosity,  $\mathbf{F} = \mu \nabla^2 \mathbf{v}$ , where  $\mu = \text{coefficient}$  of dynamical viscosity, assuming  $\rho = \text{constant}$  (incompressible fluid). If there are no other force terms in  $\mathbf{F}$ , this gives the Navier-Stokes equation.
- Similarly, can add force terms for electric and/or magnetic fields.
- For the steady flow of a gas,  $\partial \mathbf{v}/\partial t = \mathbf{0}$  and, if there are no external forces, get

$$\rho \, \mathbf{v} \cdot \boldsymbol{\nabla} \mathbf{v} = -\boldsymbol{\nabla} p,$$

which is Bernoulli's equation for compressible flow.

• Euler's equation is a statement of *momentum conservation*.

3. Energy equation:

$$\frac{\partial e}{\partial t} + \boldsymbol{\nabla} \cdot \left[ (e+p) \mathbf{v} \right] = 0, \tag{3}$$

where  $e \equiv \rho(\varepsilon + \frac{1}{2}v^2)$  = energy density (energy/volume) and  $\varepsilon$  = specific internal energy (energy/mass).

• In Lagrange form,

$$\frac{De}{Dt} = -e(\nabla \cdot \mathbf{v}) - \nabla \cdot (p\mathbf{v}),$$

or, more compactly,

$$\frac{D\varepsilon}{Dt} = -\frac{p}{\rho} (\boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{v}).$$

- The energy equation is a statement of *energy conservation* (there are many alternative ways to write the energy equation, depending on the context, e.g., using specific enthalpy (=  $\varepsilon + p/\rho$ ), specific entropy combined with temperature and heat transfer, etc.).
- 4. Equation of state:

$$p = p(\rho, \varepsilon). \tag{4}$$

- Needed to close system.
- E.g., for ideal gas,  $p = (\gamma 1)\rho\varepsilon$ , where  $\gamma$  = adiabatic index (= ratio of specific heats at constant volume and pressure).<sup>1</sup> For ideal monatomic, diatomic, and polyatomic gases,  $\gamma = 5/3$ , 7/5, and 4/3, respectively.

## Solving the Equations of Fluid Dynamics

- There are many choices one can make when adopting a numerical algorithm to solve the equations of fluid dynamics, e.g.,
  - 1. Finite differencing methods, including:
    - (a) Flux-conservative form.
    - (b) Operator splitting.
  - 2. Particle methods (e.g., smoothed particle hydrodynamics, or SPH).
- Schematically (will discuss methods in *italics*),



<sup>&</sup>lt;sup>1</sup>Also have  $pV^{\gamma} = \text{constant}, TV^{\gamma-1} = \text{constant}, Tp^{(1-\gamma)/\gamma} = \text{constant}.$