
Class 25. Fluid Dynamics, Part 2

Schemes Based on Flux-conservative Form

• By their very nature, the fluid equations (1)–(3) can be written in flux-conservative
form. In 1-D, with no external forces,

∂u

∂t
+

∂

∂x
F(u) = 0,

where

u =





ρ
ρv
e



 F(u) =





ρv
ρv2 + p
(e + p)v





(E.F.T.S.). Recall e ≡ ρ(ε + 1

2
v2) = energy density.

• When written in this form, it is clear that the techniques described before can be
applied immediately (given an equation of state for p).

• E.g., two-step Lax-Wendroff:

un+1

j = un
j −

∆t

∆x

(

F
n+1/2

j+1/2
− F

n+1/2

j−1/2

)

,

where
F

n+1/2

j±1/2
= F (u

n+1/2

j±1/2
),

etc.

• Note that all components of u must be at same location on mesh =⇒ staggered mesh
not needed (compare with operator split method, below).

• Scheme is stable provided (|v| + c)∆t/∆x < 1, where c2 = γp/ρ (c = sound speed).

Operator Split Schemes

• Simplest schemes, developed long ago by von Neumann, Richtmeyer, etc.

• The fluid equations (1)–(3) can be written as “sum” of two steps. In 1-D:

A
∂ρ/∂t + v ∂ρ/∂x = 0

∂(ρv)/∂t + v ∂(ρv)/∂x = 0
∂e/∂t + v ∂e/∂x = 0

B
∂ρ/∂t = 0

ρ ∂v/∂t = −∂p/∂x
∂e/∂t = −p ∂v/∂x

• Equations in A are all the form of scalar advection equations. Adopt high-order upwind
schemes to solve A =⇒ advection step (transport).

• Equations in B are all source terms in the equations that can be differenced directly
=⇒ source step.
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• Best to adopt staggered mesh with v at cell edges, p, ρ, e at cell centers.

vi vi vi

pi p
+1i

+1/2 +3/2−1/2

(In multi-D, v defined at cell faces—naturally describes flux of fluid into/out of cell.)

– Leads to 2nd-order accurate FDEs for the source terms. I.e.,

vn+1

i−1/2
= vn

i−1/2 −
∆t(pi − pi−1)

1

2
(ρi + ρi−1)∆x

,

en+1

i = en
i −

∆t(vi+1/2 − vi−1/2)pi

∆x
.

• Operator split schemes are simple, easy to code, and easy to extend with more complex
physics, e.g., MHD, radiation, etc.

• But, they don’t treat regions with sharp p gradients as well as more modern schemes
(e.g., Godunov).

Smoothed Particle Hydrodynamics (SPH)

• So far we have only considered methods that require dividing space into a grid. Can
we represent the local fluid density without a grid?

– Advantage: not confined to a specific geometry, more adaptable.

• Strategy (cf. Monaghan 1992, ARAA 30, 543):

– Represent fluid by large number (∼ 104–6) of “particles.”

– Each particle has a mass, Lagrangian position and velocity, internal energy, and
possibly an initial density.

– Other quantities derived by smoothing over an “interpolating kernel” W (units:
1/volume). In this way the statistical properties of the real fluid elements are
treated in an average sense.

– Solve fluid equations in comoving frame with these smoothed quantities using any
familiar method (leapfrog, RK, etc.)

The interpolating kernel

• If f is some quantity (e.g., density), then its kernel estimate (per unit volume) 〈f〉 is
given by

〈f(r)〉 =

∫

f(r′)W (r− r′; h) dr′,
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where the integral is over all space,
∫

W (r − r′; h) dr′ = 1,

and
lim
h→0

W (r− r′; h) = δ(r − r′).

(h is called the “smoothing length” and is typically chosen so that N ' 15 particles
lie within h of any particle. The error for using this approximation goes as ∼ O(h2).)

• For numerical work, split the fluid into small volume elements ∆τ of mass ρ∆τ , where
ρ is a representative density for the small fluid element. The integral can then be
approximated by

〈f(r)〉 =
∑

j

mj
f(rj)

ρ(rj)
W (r− rj; h).

(Note mj/ρj takes the place of
∫

dr′.)

• The interpolating kernel can be any analytically differentiable function that satisfies
the normalization and limiting properties above. E.g.,

3-D Gaussian kernel:

W (r; h) =
1

(πh2)3/2
e−r2/h2

.

3-D spline kernel:

W (r; h) =
1

πh3







1 − 3

2
s2 + 3

4
s3 , 0 ≤ s < 1

1

4
(2 − s)3 , 1 ≤ s < 2

0 , s ≥ 2
,

where s ≡ r/h.

In practice, choose W so that it falls off rapidly for |r − rj| ≥ h, hence only need to
sum over nearest neighbours.

• Note the kernel estimate of the gradient of f(r) is just

〈∇f(r)〉 =
∑

j

mj
f(rj)

ρ(rj)
∇W (r− rj; h)

(since the ∇ operator is taken with respect to the space coordinates r and W is the
only quantity that depends on r). However, it is often better to use the identity
ρ∇f = ∇(ρf) − f∇ρ to give1

〈ρi∇fi〉 =
∑

j

mj(fj − fi)∇iWij,

where ∇iWij is the gradient of W (ri − rj; h) w.r.t. the coordinates of particle i.

1Because 〈∇i(ρifi)〉 =
∑

j mjfj∇iWij and fi〈∇iρi〉 =
∑

j mjfi∇iWij .
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The equations of fluid dynamics, SPH version

• Recall the continuity equation
Dρ

Dt
= −ρ∇·v,

where the derivative is taken in the fluid frame.

• The SPH equivalent would be

Dρi

Dt
=

∑

j

mjvij·∇iWij,

where vij ≡ vi − vj (we used that vector identity again, replacing the gradient with
the divergence).

• But we could estimate the density everywhere directly by

〈ρ(r)〉 =
∑

j

mjW (r − rj ; h).

This means we don’t really need to solve the continuity equation (except in practice it
turns out it is better to solve the equation for technical reasons; see Monaghan 1992).

• The momentum equation without external forces

Dv

Dt
= −

1

ρ
∇p

becomes
Dvi

Dt
= −

∑

j

mj

(

pj

ρ2
j

+
pi

ρ2
i

)

∇iWij ,

where the pressure gradient has been symmetrized by

∇p

ρ
= ∇

(

p

ρ

)

+
p

ρ2
∇ρ

in order to ensure conservation of linear and angular momentum (the momentum equa-
tion becomes a central force law between particles i and j, assuming W is Gaussian).

• Finally, the energy equation
Dε

Dt
= −

p

ρ
(∇·v)

becomes
Dε

dt
=

1

2

∑

j

mj

(

pj

ρ2
j

+
pi

ρ2
i

)

vij·∇iWij ,

where the factor of 1/2 comes from symmetrization (it is a characteristic of SPH that
gradient terms can be written in many different ways, just as there are a variety of
FDE representations).
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• Particles are moved using
Dri

Dt
= vi,

or, to ensure particles move with a velocity similar to the average velocity in their
neighbourhood,

Dri

Dt
= vi + ε

∑

j

mj

(

vji

ρ̄ij

)

Wij ,

where ρ̄ij ≡ (ρi + ρj)/2 and 0 ≤ ε ≤ 1 is a constant (the “X” factor).

• As usual, also need an equation of state.

• Can add other forces, i.e., viscosity, magnetic fields, etc.

• Can implement adaptive smoothing lengths.

Summary

• SPH is based on microscopic picture of real fluid. But real fluid has many more particles
than can be followed on a computer, so “smoothing” is used.

• Advantage of scheme is that it is adaptive—particles go where density is high. Good
for following dynamics where gravity dominates because of its N -body-like foundation.

• Disadvantage of scheme is that it does not resolve low-density regions well, it does not
handle regions with strong p gradients well (shocks), and it is expensive (need a way
to find nearest neighbours =⇒ tree code!).

• Finite differencing methods are attractive because mathematical properties of FDEs
well studied, and can prove/analyze stability, convergence rate, etc. of various schemes.
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