Class 25. Fluid Dynamics, Part 2

Schemes Based on Flux-conservative Form

By their very nature, the fluid equations (1)—(3) can be written in flux-conservative
form. In 1-D, with no external forces,
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(E.F.T.S.). Recall e = p(e + 3v%) = energy density.

When written in this form, it is clear that the techniques described before can be
applied immediately (given an equation of state for p).

E.g., two-step Lax-Wendroff:
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Note that all components of u must be at same location on mesh = staggered mesh
not needed (compare with operator split method, below).

Scheme is stable provided (|v| + ¢)At/Ax < 1, where ¢* = vp/p (c = sound speed).

Operator Split Schemes

Simplest schemes, developed long ago by von Neumann, Richtmeyer, etc.

The fluid equations (1)—(3) can be written as “sum” of two steps. In 1-D:
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Equations in A are all the form of scalar advection equations. Adopt high-order upwind
schemes to solve A = advection step (transport).

Equations in B are all source terms in the equations that can be differenced directly
= source step.



e Best to adopt staggered mesh with v at cell edges, p, p, e at cell centers.
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(In multi-D, v defined at cell faces—naturally describes flux of fluid into/out of cell.)

— Leads to 2"d-order accurate FDEs for the source terms. Le.,

At(Pz‘ - pz’—l)

n+1 _ n
Ui—1/2 - Ui—1/2 - %(pz + pi_l)AJf’
n+1 At(Vig1/2 — Vic1/2)Pi

e Operator split schemes are simple, easy to code, and easy to extend with more complex
physics, e.g., MHD, radiation, etc.

e But, they don’t treat regions with sharp p gradients as well as more modern schemes
(e.g., Godunov).

Smoothed Particle Hydrodynamics (SPH)

e So far we have only considered methods that require dividing space into a grid. Can
we represent the local fluid density without a grid?

— Advantage: not confined to a specific geometry, more adaptable.
e Strategy (cf. Monaghan 1992, ARAA 30, 543):

— Represent fluid by large number (~ 10%°9) of “particles.”

— Each particle has a mass, Lagrangian position and velocity, internal energy, and
possibly an initial density.

— Other quantities derived by smoothing over an “interpolating kernel” W (units:
1/volume). In this way the statistical properties of the real fluid elements are
treated in an average sense.

— Solve fluid equations in comoving frame with these smoothed quantities using any
familiar method (leapfrog, RK, etc.)
The interpolating kernel

e If f is some quantity (e.g., density), then its kernel estimate (per unit volume) (f) is
given by

(f(x)) = / FEYW (e — 1 h) dr’,



where the integral is over all space,
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(h is called the “smoothing length” and is typically chosen so that N ~ 15 particles
lie within h of any particle. The error for using this approximation goes as ~ O(h?).)

e For numerical work, split the fluid into small volume elements A7 of mass pA7, where
p is a representative density for the small fluid element. The integral can then be

approximated by -
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(Note my;/p; takes the place of [ dr'.)

e The interpolating kernel can be any analytically differentiable function that satisfies
the normalization and limiting properties above. E.g.,

3-D Gaussian kernel:
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where s = r/h.

In practice, choose W so that it falls off rapidly for |[r — r;| > h, hence only need to
sum over nearest neighbours.

e Note the kernel estimate of the gradient of f(r) is just
f(r;)
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(since the V operator is taken with respect to the space coordinates r and W is the
only quantity that depends on r). However, it is often better to use the identity
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where V,;W,; is the gradient of W (r; —r;; h) w.r.t. the coordinates of particle .

1Because <Vz(pzfz)> = Zj mjijiWij and fz<vzpz> = Zj mjfiViWij.
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The

equations of fluid dynamics, SPH version

Recall the continuity equation
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where the derivative is taken in the fluid frame.

The SPH equivalent would be
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where v;; = v; — v; (we used that vector identity again, replacing the gradient with
the divergence).

But we could estimate the density everywhere directly by

(p(r)) = ijW(r —rj;h).

This means we don’t really need to solve the continuity equation (except in practice it
turns out it is better to solve the equation for technical reasons; see Monaghan 1992).

The momentum equation without external forces
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where the pressure gradient has been symmetrized by
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in order to ensure conservation of linear and angular momentum (the momentum equa-
tion becomes a central force law between particles i and j, assuming W is Gaussian).

Finally, the energy equation
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where the factor of 1/2 comes from symmetrization (it is a characteristic of SPH that
gradient terms can be written in many different ways, just as there are a variety of
FDE representations).



e Particles are moved using
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or, to ensure particles move with a velocity similar to the average velocity in their

neighbourhood,
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where p;; = (p; + p;)/2 and 0 < e <1 is a constant (the “X” factor).
e As usual, also need an equation of state.
e Can add other forces, i.e., viscosity, magnetic fields, etc.

e Can implement adaptive smoothing lengths.

Summary

e SPH is based on microscopic picture of real fluid. But real fluid has many more particles
than can be followed on a computer, so “smoothing” is used.

e Advantage of scheme is that it is adaptive—particles go where density is high. Good
for following dynamics where gravity dominates because of its N-body-like foundation.

e Disadvantage of scheme is that it does not resolve low-density regions well, it does not
handle regions with strong p gradients well (shocks), and it is expensive (need a way
to find nearest neighbours = tree code!).

e Finite differencing methods are attractive because mathematical properties of FDEs
well studied, and can prove/analyze stability, convergence rate, etc. of various schemes.



