Class 26. Fourier Transforms, Part 1

Introduction

Cf. NRiC §12.0.

Fourier theorem: a well-behaved function can be represented by a series of sines and
cosines of different frequencies and amplitudes.

Often useful to know what these frequencies and amplitudes are. Can do this with a
Fourier transform:

= / h(t)e* L,
where —oo < f < 00 is the frequency and H(f) is the amplitude (H is often complex,
i.e., contains phase info).

Inverse Fourier transform:

~ [ ety

Units: if ¢ is in seconds, f is in Hertz. If have h(x), x in m, then get H(n), n =
wavenumber (m™!).

FTs are linear ops:
FT(9+h) = FT(9)+FT(h),
FT(ah) = aFT(h).

h(t) may have special symmetries, e.g., pure real or pure imaginary, even (h(t) = h(—t))
or odd (h(t) = —h(—t)) = can increase computational efficiency:

h(t) pure real = H(—f) = H*(f)
h(t) pure imaginary = H(—f) = —H"*(f)
h(t) real & even = H(f) real & even
h(t) real & odd = H(f) imaginary & odd
ete.
Other properties, and combinations
o If h(t) <= H(f) are a FT pair, then
h(at) <— F}L\H(g) “time scaling”
|b| h(t) <= H(bf) “frequency scaling”
h(t —ty) <= H(f)e*™ /0  “time shifting”
h(t)e 2miht  «— H(f — fo) “frequency shifting”
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e Combinations: if h(t) <= H(f) and ¢(t) <= G(f), then

1. Convolution:
g*xh= / g(T)h(t — T) dr.

oo

— Function of time. Note gxh =h % g.

2. Convolution theorem:

g*h <= G(f)H(f)

— E.g., instrumental profile (point spread function): observe star, get PSF (con-
volution of instrumental profile with delta function), now observe target, take
FT, divide by FT of PSF, take inverse F'T to get deconvolved image.

3. Correlation: .
corr(g, h) = / g(T + t)h(7) dT.
— Function of time, called “lag.”
— Note corr(g,h) <= G(f)H(—f) = G(f)H*(f) if h(t) real.
— Correlation used to compare data sets: it’s large at some ¢ if functions are
close copies of each other but lead or lag in time by ¢. E.g., Doppler shift!

4. Wiener-Khinchin theorem (autocorrelation):

corr(g, g) <= |G(f)I*

5. Parseval’s theorem:

total power = /OO |h(t)|*dt = /_00 |H(f)*df.

— o0 [e.e]

e Often interested in power between f and f + df. Usually regard f as varying from 0
(D.C.) to 400 = one-sided power spectral density (PSD):

Bu(f) = HHP+H(=F)? 0< f < oo
If h(t) real, P,(f) = 2|H(f)|.

e If h(t) goes endlessly from —oo < ¢t < oo, total power and PSD will generally be
infinite. Instead compute PSD per unit time, i.e. PSD/sample length. Area then
corresponds to mean square amplitude. As sample length — oo, PSD per unit time —
delta functions for pure sines and cosines.

Discretely Sampled Data
o Cf. NRiC §12.1.

e For real data, often have hy = h(ty), tx = kA, k = 0,1,...,N — 1. Here A is the
sampling interval; 1/A is the sampling rate.
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= 55 Critical sampling of a sine wave of frequency

Define Nyquist critical frequency f.
fe is two points per cycle.

Sampling theorem: if signal is bandwidth limited such that H(f) = 0 for all |f| > f.,
then entire information content of signal can be recorded by sampling at A~! = 2f...

If h(t) has power in frequencies outside —f. < f < f., sampling h(t) causes power to
spuriously move inside this range = aliasing:

A i

— Solution: filter signal and sample at least 2 points/cycle for highest frequency.

If A(t) finite in time, N points should sample entire interval. If A(t) infinite, use
representative portion.

N inputs = N outputs:

n N N

anm, n:—g,...,z.

(For simplicity, assume N is even.) Extreme values of n <= Nyquist frequency range.

Now approximate:

N-1 N-1

H(f,) = / h(t)e*™nt dt ~ Z hpe®™ifnts A = A Z By e2mkn/N
e k=0 0
= H, (DFT)

Note H_, = Hy_,, if n = 1,2, ... (period N). Convention: let n =0,1,.... N —1son
and k vary over same range. .. n = 0 <= zero frequency, n = N/2 <= f = f. and
f = —f.. Hence:

1<n<N/2-1 <<= 0<[f</fe,
N/2+1<n<N-1 << —f.<f<0O.

Also note H(—f) <= H,_n.

Discrete inverse Fourier transform:
| Nl
hk _ N 2 Hn€—27rzkn/N.
n=0

Very similar to H,, = can use same code...



Application: Solving Poisson’s Equation
o Cf. NRiC §19.4.

e Recall in 2-D the prototypical elliptic equation is given by

o o
a$2 ayQ_p'r7y

The FD version is (assuming Az = Ay = A)

i1k — 2Ujp + Ujrik | Ujk—1 — 2Ujk + Uj ki1

A2 A2 = Pjk- (1>
e Consider letting u;; be the 2-D inverse DF'T of the Fourier-domain equivalent of u:
| JolE-
~ —2mimyj/J —2mink/K
Uik = T7e 22 Uy, € e /K, (2)

(In multi-D, FTs can be computed independently in each dimension.)

Similarly,

Pik = N —27rimj/J€—2m'nk/K' (3)

Substituting (2) and (3) into (1), we get

ﬁm,n (627rz'm/J + 6—27rz'm/J + 627rin/K + 6—27rin/K . 4) _ ﬁm,nA27

or ) ;
m,n 2<Cos2ﬂ—Tm+COS27r7n_2)‘
e Strategy:
1. Compute p,,,, as the F'T
-1K-1
Pik = p; k627rimj/J62m'nk/K'
j=0 k=0

2. Compute Uy, , from (4).

3. Compute u;; by inverse FT (2).
e Procedure valid only for periodic boundary conditions, i.e., for u;r = w5 = Uj k+K-

e All we need now is a fast way to compute the transforms!...



