Class 26. Fourier Transforms, Part 1

Introduction

- Cf. NRiC §12.0.
- Fourier theorem: a well-behaved function can be represented by a series of sines and cosines of different frequencies and amplitudes.
- Often useful to know what these frequencies and amplitudes are. Can do this with a Fourier transform:

$$
H(f)=\int_{-\infty}^{\infty} h(t) e^{2 \pi i f t} d t,
$$

where $-\infty<f<\infty$ is the frequency and $H(f)$ is the amplitude (H is often complex, i.e., contains phase info).

- Inverse Fourier transform:

$$
h(t)=\int_{-\infty}^{\infty} H(f) e^{-2 \pi i f t} d f
$$

- Units: if t is in seconds, f is in Hertz. If have $h(x), x$ in m , then get $H(n), n=$ wavenumber $\left(\mathrm{m}^{-1}\right)$.
- FTs are linear ops:

$$
\begin{aligned}
\mathrm{FT}(g+h) & =\mathrm{FT}(g)+\mathrm{FT}(h), \\
\mathrm{FT}(\alpha h) & =\alpha \mathrm{FT}(h) .
\end{aligned}
$$

- $h(t)$ may have special symmetries, e.g., pure real or pure imaginary, even $(h(t)=h(-t))$ or odd $(h(t)=-h(-t)) \Longrightarrow$ can increase computational efficiency:

$$
\begin{aligned}
h(t) \text { pure real } & \Longrightarrow H(-f)=H^{\star}(f) \\
h(t) \text { pure imaginary } & \Longrightarrow H(-f)=-H^{\star}(f) \\
h(t) \text { real \& even } & \Longrightarrow H(f) \text { real \& even } \\
h(t) \text { real \& odd } & \Longrightarrow H(f) \text { imaginary \& odd } \\
\text { etc. } &
\end{aligned}
$$

Other properties, and combinations

- If $h(t) \Longleftrightarrow H(f)$ are a FT pair, then

$$
\begin{array}{rll}
h(a t) & \Longleftrightarrow \frac{1}{|a|} H\left(\frac{f}{a}\right) & \text { "time scaling" } \\
\frac{1}{|b|} h\left(\frac{t}{b}\right) & \Longleftrightarrow H(b f) & \text { "frequency scaling" } \\
h\left(t-t_{0}\right) & \Longleftrightarrow H(f) e^{2 \pi i f t_{0}} & \text { "time shifting" } \\
h(t) e^{-2 \pi i f_{0} t} & \Longleftrightarrow H\left(f-f_{0}\right) & \text { "frequency shifting" }
\end{array}
$$

- Combinations: if $h(t) \Longleftrightarrow H(f)$ and $g(t) \Longleftrightarrow G(f)$, then

1. Convolution:

$$
g \star h \equiv \int_{-\infty}^{\infty} g(\tau) h(t-\tau) d \tau
$$

- Function of time. Note $g \star h=h \star g$.

2. Convolution theorem:

$$
g \star h \Longleftrightarrow G(f) H(f)
$$

- E.g., instrumental profile (point spread function): observe star, get PSF (convolution of instrumental profile with delta function), now observe target, take FT, divide by FT of PSF, take inverse FT to get deconvolved image.

3. Correlation:

$$
\operatorname{corr}(g, h)=\int_{-\infty}^{\infty} g(\tau+t) h(\tau) d \tau
$$

- Function of time, called "lag."
- Note $\operatorname{corr}(g, h) \Longleftrightarrow G(f) H(-f)=G(f) H^{\star}(f)$ if $h(t)$ real.
- Correlation used to compare data sets: it's large at some t if functions are close copies of each other but lead or lag in time by t. E.g., Doppler shift!

4. Wiener-Khinchin theorem (autocorrelation):

$$
\operatorname{corr}(g, g) \Longleftrightarrow|G(f)|^{2}
$$

5. Parseval's theorem:

$$
\text { total power }=\int_{-\infty}^{\infty}|h(t)|^{2} d t=\int_{-\infty}^{\infty}|H(f)|^{2} d f
$$

- Often interested in power between f and $f+d f$. Usually regard f as varying from 0 (D.C.) to $+\infty \Longrightarrow$ one-sided power spectral density (PSD):

$$
P_{h}(f) \equiv|H(f)|^{2}+|H(-f)|^{2}, \quad 0 \leq f<\infty .
$$

If $h(t)$ real, $P_{h}(f)=2|H(f)|^{2}$.

- If $h(t)$ goes endlessly from $-\infty<t<\infty$, total power and PSD will generally be infinite. Instead compute PSD per unit time, i.e. PSD/sample length. Area then corresponds to mean square amplitude. As sample length $\rightarrow \infty$, PSD per unit time \rightarrow delta functions for pure sines and cosines.

Discretely Sampled Data

- Cf. NRiC §12.1.
- For real data, often have $h_{k} \equiv h\left(t_{k}\right), t_{k}=k \Delta, k=0,1, \ldots, N-1$. Here Δ is the sampling interval; $1 / \Delta$ is the sampling rate.
- Define Nyquist critical frequency $f_{c} \equiv \frac{1}{2 \Delta}$. Critical sampling of a sine wave of frequency f_{c} is two points per cycle.
- Sampling theorem: if signal is bandwidth limited such that $H(f)=0$ for all $|f| \geq f_{c}$, then entire information content of signal can be recorded by sampling at $\Delta^{-1}=2 f_{c}$.
- If $h(t)$ has power in frequencies outside $-f_{c}<f<f_{c}$, sampling $h(t)$ causes power to spuriously move inside this range \Longrightarrow aliasing:

- Solution: filter signal and sample at least 2 points/cycle for highest frequency.
- If $h(t)$ finite in time, N points should sample entire interval. If $h(t)$ infinite, use representative portion.
- N inputs $\Longrightarrow N$ outputs:

$$
f_{n} \equiv \frac{n}{N \Delta}, \quad n=-\frac{N}{2}, \ldots, \frac{N}{2} .
$$

(For simplicity, assume N is even.) Extreme values of $n \Longleftrightarrow$ Nyquist frequency range.

- Now approximate:

$$
H\left(f_{n}\right)=\int_{-\infty}^{\infty} h(t) e^{2 \pi i f_{n} t} d t \simeq \sum_{k=0}^{N-1} h_{k} e^{2 \pi i f_{n} t_{k}} \Delta=\Delta \underbrace{\sum_{k=0}^{N-1} h_{k} e^{2 \pi i k n / N}}_{\equiv H_{n}(\mathrm{DFT})}
$$

- Note $H_{-n}=H_{N-n}$ if $n=1,2, \ldots(\operatorname{period} N)$. Convention: let $n=0,1, \ldots, N-1$ so n and k vary over same range. $\therefore n=0 \Longleftrightarrow$ zero frequency, $n=N / 2 \Longleftrightarrow f=f_{c}$ and $f=-f_{c}$. Hence:

$$
\begin{aligned}
1 \leq n \leq N / 2-1 & \Longleftrightarrow 0<f<f_{c}, \\
N / 2+1 \leq n \leq N-1 & \Longleftrightarrow-f_{c}<f<0 .
\end{aligned}
$$

Also note $H(-f) \Longleftrightarrow H_{n-N}$.

- Discrete inverse Fourier transform:

$$
h_{k}=\frac{1}{N} \sum_{n=0}^{N-1} H_{n} e^{-2 \pi i k n / N} .
$$

Very similar to $H_{n} \Longrightarrow$ can use same code...

Application: Solving Poisson's Equation

- Cf. NRiC §19.4.
- Recall in 2-D the prototypical elliptic equation is given by

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\rho(x, y)
$$

- The FD version is (assuming $\Delta x=\Delta y \equiv \Delta)$

$$
\begin{equation*}
\frac{u_{j-1, k}-2 u_{j, k}+u_{j+1, k}}{\Delta^{2}}+\frac{u_{j, k-1}-2 u_{j, k}+u_{j, k+1}}{\Delta^{2}}=\rho_{j, k} \tag{1}
\end{equation*}
$$

- Consider letting $u_{j, k}$ be the 2-D inverse DFT of the Fourier-domain equivalent of u :

$$
\begin{equation*}
u_{j, k}=\frac{1}{J K} \sum_{m=0}^{J-1} \sum_{n=0}^{K-1} \hat{u}_{m, n} e^{-2 \pi i m j / J} e^{-2 \pi i n k / K} \tag{2}
\end{equation*}
$$

(In multi-D, FTs can be computed independently in each dimension.)

- Similarly,

$$
\begin{equation*}
\rho_{j, k}=\frac{1}{J K} \sum_{m=0}^{J-1} \sum_{n=0}^{K-1} \hat{\rho}_{m, n} e^{-2 \pi i m j / J} e^{-2 \pi i n k / K} . \tag{3}
\end{equation*}
$$

- Substituting (2) and (3) into (1), we get

$$
\hat{u}_{m, n}\left(e^{2 \pi i m / J}+e^{-2 \pi i m / J}+e^{2 \pi i n / K}+e^{-2 \pi i n / K}-4\right)=\hat{\rho}_{m, n} \Delta^{2},
$$

or

$$
\begin{equation*}
\hat{u}_{m, n}=\frac{\hat{\rho}_{m, n} \Delta^{2}}{2\left(\cos \frac{2 \pi m}{J}+\cos \frac{2 \pi n}{K}-2\right)} . \tag{4}
\end{equation*}
$$

- Strategy:

1. Compute $\hat{\rho}_{m, n}$ as the FT

$$
\hat{\rho}_{j, k}=\sum_{j=0}^{J-1} \sum_{k=0}^{K-1} \rho_{j, k} e^{2 \pi i m j / J} e^{2 \pi i n k / K}
$$

2. Compute $\hat{u}_{m, n}$ from (4).
3. Compute $u_{j, k}$ by inverse FT (2).

- Procedure valid only for periodic boundary conditions, i.e., for $u_{j, k}=u_{j+J, k}=u_{j, k+K}$.
- All we need now is a fast way to compute the transforms!...

