
Class 26. Fourier Transforms, Part 1

Introduction

• Cf. NRiC §12.0.

• Fourier theorem: a well-behaved function can be represented by a series of sines and
cosines of different frequencies and amplitudes.

• Often useful to know what these frequencies and amplitudes are. Can do this with a
Fourier transform:

H(f) =

∫ ∞

−∞

h(t)e2πiftdt,

where −∞ < f < ∞ is the frequency and H(f) is the amplitude (H is often complex,
i.e., contains phase info).

• Inverse Fourier transform:

h(t) =

∫ ∞

−∞

H(f)e−2πiftdf.

• Units: if t is in seconds, f is in Hertz. If have h(x), x in m, then get H(n), n =
wavenumber (m−1).

• FTs are linear ops:

FT(g + h) = FT(g) + FT(h),

FT(αh) = αFT(h).

• h(t) may have special symmetries, e.g., pure real or pure imaginary, even (h(t) = h(−t))
or odd (h(t) = −h(−t)) =⇒ can increase computational efficiency:

h(t) pure real =⇒ H(−f) = H?(f)

h(t) pure imaginary =⇒ H(−f) = −H?(f)

h(t) real & even =⇒ H(f) real & even

h(t) real & odd =⇒ H(f) imaginary & odd

etc.

Other properties, and combinations

• If h(t) ⇐⇒ H(f) are a FT pair, then

h(at) ⇐⇒ 1

|a|
H(f

a
) “time scaling”

1

|b|
h(t

b
) ⇐⇒ H(bf) “frequency scaling”

h(t − t0) ⇐⇒ H(f)e2πift0 “time shifting”
h(t)e−2πif0t ⇐⇒ H(f − f0) “frequency shifting”

1

• Combinations: if h(t) ⇐⇒ H(f) and g(t) ⇐⇒ G(f), then

1. Convolution:

g ? h ≡

∫ ∞

−∞

g(τ)h(t − τ) dτ.

– Function of time. Note g ? h = h ? g.

2. Convolution theorem:
g ? h ⇐⇒ G(f)H(f)

– E.g., instrumental profile (point spread function): observe star, get PSF (con-
volution of instrumental profile with delta function), now observe target, take
FT, divide by FT of PSF, take inverse FT to get deconvolved image.

3. Correlation:

corr(g, h) =

∫ ∞

−∞

g(τ + t)h(τ) dτ.

– Function of time, called “lag.”

– Note corr(g, h) ⇐⇒ G(f)H(−f) = G(f)H?(f) if h(t) real.

– Correlation used to compare data sets: it’s large at some t if functions are
close copies of each other but lead or lag in time by t. E.g., Doppler shift!

4. Wiener-Khinchin theorem (autocorrelation):

corr(g, g) ⇐⇒ |G(f)|2.

5. Parseval’s theorem:

total power =

∫ ∞

−∞

|h(t)|2 dt =

∫ ∞

−∞

|H(f)|2 df.

• Often interested in power between f and f + df . Usually regard f as varying from 0
(D.C.) to +∞ =⇒ one-sided power spectral density (PSD):

Ph(f) ≡ |H(f)|2 + |H(−f)|2, 0 ≤ f < ∞.

If h(t) real, Ph(f) = 2|H(f)|2.

• If h(t) goes endlessly from −∞ < t < ∞, total power and PSD will generally be
infinite. Instead compute PSD per unit time, i.e. PSD/sample length. Area then
corresponds to mean square amplitude. As sample length → ∞, PSD per unit time →
delta functions for pure sines and cosines.

Discretely Sampled Data

• Cf. NRiC §12.1.

• For real data, often have hk ≡ h(tk), tk = k∆, k = 0, 1, ..., N − 1. Here ∆ is the
sampling interval; 1/∆ is the sampling rate.

2

• Define Nyquist critical frequency fc ≡
1

2∆
. Critical sampling of a sine wave of frequency

fc is two points per cycle.

• Sampling theorem: if signal is bandwidth limited such that H(f) = 0 for all |f | ≥ fc,
then entire information content of signal can be recorded by sampling at ∆−1 = 2fc.

• If h(t) has power in frequencies outside −fc < f < fc, sampling h(t) causes power to
spuriously move inside this range =⇒ aliasing :

− fc fc

H(f)H(f)h

t f

– Solution: filter signal and sample at least 2 points/cycle for highest frequency.

• If h(t) finite in time, N points should sample entire interval. If h(t) infinite, use
representative portion.

• N inputs =⇒ N outputs:

fn ≡
n

N∆
, n = −

N

2
, ...,

N

2
.

(For simplicity, assume N is even.) Extreme values of n ⇐⇒ Nyquist frequency range.

• Now approximate:

H(fn) =

∫ ∞

−∞

h(t)e2πifnt dt '

N−1∑

k=0

hke
2πifntk∆ = ∆

N−1∑

k=0

hke
2πikn/N

︸ ︷︷ ︸

≡ Hn (DFT)

.

• Note H−n = HN−n if n = 1, 2, ... (period N). Convention: let n = 0, 1, ..., N − 1 so n
and k vary over same range. ∴ n = 0 ⇐⇒ zero frequency, n = N/2 ⇐⇒ f = fc and

f = −fc. Hence:

1 ≤ n ≤ N/2 − 1 ⇐⇒ 0 < f < fc,

N/2 + 1 ≤ n ≤ N − 1 ⇐⇒ −fc < f < 0.

Also note H(−f) ⇐⇒ Hn−N .

• Discrete inverse Fourier transform:

hk =
1

N

N−1∑

n=0

Hne−2πikn/N .

Very similar to Hn =⇒ can use same code...

3

Application: Solving Poisson’s Equation

• Cf. NRiC §19.4.

• Recall in 2-D the prototypical elliptic equation is given by

∂2u

∂x2
+

∂2u

∂y2
= ρ(x, y).

• The FD version is (assuming ∆x = ∆y ≡ ∆)

uj−1,k − 2uj,k + uj+1,k

∆2
+

uj,k−1 − 2uj,k + uj,k+1

∆2
= ρj,k. (1)

• Consider letting uj,k be the 2-D inverse DFT of the Fourier-domain equivalent of u:

uj,k =
1

JK

J−1∑

m=0

K−1∑

n=0

ûm,ne
−2πimj/Je−2πink/K . (2)

(In multi-D, FTs can be computed independently in each dimension.)

• Similarly,

ρj,k =
1

JK

J−1∑

m=0

K−1∑

n=0

ρ̂m,ne
−2πimj/Je−2πink/K . (3)

• Substituting (2) and (3) into (1), we get

ûm,n

(
e2πim/J + e−2πim/J + e2πin/K + e−2πin/K − 4

)
= ρ̂m,n∆2,

or

ûm,n =
ρ̂m,n∆2

2
(
cos 2πm

J
+ cos 2πn

K
− 2

) . (4)

• Strategy:

1. Compute ρ̂m,n as the FT

ρ̂j,k =

J−1∑

j=0

K−1∑

k=0

ρj,ke
2πimj/Je2πink/K .

2. Compute ûm,n from (4).

3. Compute uj,k by inverse FT (2).

• Procedure valid only for periodic boundary conditions, i.e., for uj,k = uj+J,k = uj,k+K.

• All we need now is a fast way to compute the transforms!...

4

