## Data Representations

- Computers store data as different variable types, e.g. integer, floating point, complex, etc.
- Different machines have different wordlengths,
  e.g. 4-byte ints on a 32-bit machine (Pentium),
  8-byte ints on a 64-bit machine (Alpha).
- This makes (binary) data non-portable.

## Integers

- All data types represented by 0's and 1's.
- An integer value:

$$j = \sum_{i=1}^{N} s_i \times 2^{N-i}$$

- N = # of bits in word
- $s_i$  = value of bit *i* in binary string *s*
- e.g.  $0\ 0\ 0\ 0\ 1\ 1\ 0 = 2^2 + 2^1 = 6$  for 8-bit word.
- Use "two's complement" method for sign.

## Integers, Cont'd

- Largest value that can be represented is  $2^N 1$ .
- For 32-bit word this is 4,294,967,295.
- Arithmetic with integers is exact, except:
  - When division results in remainder.
  - Result exceeds largest representable integer e.g.  $2 \times 10^9 + 3 \times 10^9$  = overflow error
- Note multiplication by 2's can be achieved by left-shift, which is very fast (in C: "<<" operator).</li>

# Two's Complement

- Exploits finite size of data representations (cyclic groups) and properties of binary arithmetic.
- To get negative of binary number, invert all bits and add 1 to the result.
  - e.g. 1 = 0 0 0 0 0 0 0 1 in 8-bit

invert bits: 11111110

add 1: 00000001

result:  $1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ = -1$ 

• In 8 bits, signed char ranges from -128 to +127.

## Negative Powers of 2

 Binary notation can be extended to cover negative powers of 2, e.g. "110.101" is:

 $1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{-1} + 1 \times 2^{-3} = 6.625$ 

- Can represent real numbers by specifying some location in the word as the "binary point" → fixed-point representation.
- In practice, use some bits for an exponent → floating-point representation.

#### Floats

 For most machines these days, real numbers are represented by floating-point format:

 $x = s \times M \times B^{e-E}$ 

- s = sign B = base (usually 2, sometimes 16)
- M = mantissa e = exponent

E = bias, usually 127.

• In past, manufacturers used different number of bits for each of *M* and  $e \rightarrow$  non-portable code.

## Floats, Cont'd

- Currently, most manufacturers adopt IEEE standard:
  - $-s = 1^{st}$  bit
  - Next 8 bits are e
  - Last 23 bits are M, expressed as a binary fraction, either 1.F, or, if e=0, 0.F, where F is in base 2.
- Largest single-precision float  $f_{max} = 2^{127} \approx 10^{38}$ .
- Smallest (and least precise!)

$$f_{\min} = 2^{-149} \approx 10^{-45}.$$

#### Round-off Error

- Not all values along real axis can be represented.
- There are  $10^{38}$  integers between  $f_{min} \& f_{max}$ , but only  $2^{32} \approx 10^9$  bit patterns.



- Values  $< |10^{-45}|$  result in "underflow" error.
- If value cannot be represented, next nearest value is produced. Difference between desired and actual value is called "round-off error" (RE).

### Round-off Error, Cont'd

- Smallest value  $e_m$  for which  $1 + e_m > 1$  is called "machine accuracy", typically ~10<sup>-7</sup> for 32 bits.
- Double precision greatly reduces  $e_m (\sim 10^{-16})$ .
- RE accumulates in a calculation:
  - Random walk: total error  $N^{1/2} e_m$  after N operations.
  - But algorithms rarely random  $\rightarrow$  linear error N e<sub>m</sub>.

### Round-off Error, Cont'd

 Subtraction of two very nearly equal numbers can give rise to large RE.

e.g. Solution of quadratic equation...

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

...can go badly wrong whenever  $ac \ll b^2$  (Cf. PS#2).

 RE cannot be avoided—it is a consequence of using a finite number of bits to represent real values.

## Truncation Error

- In practice, most numerical algorithms approximate desired solution with a finite number of artithmetic operations.
  - e.g. evaluating integral by quadrature summing series using finite number of terms
- Difference between true solution and numerical approximation to solution is called "truncation error" (TE).

## Truncation Error, Cont'd

- TE exists even on "perfect" machine with no RE.
- TE is under programmer's control; much effort goes into reducing it.
- Usually RE and TE do not interact.
- Sometimes TE can amplify RE until it swamps calculation. Solution is then called <u>unstable</u>.

e.g. Integer powers of Golden Mean (Cf. PS#2).