Detsa Representations

- Computers store data as different variable types, e.g. integer, floating point, complex, etc.
- Different machines have different wordlengths, e.g. 4-byte ints on a 32-bit machine (Pentium), 8 -byte ints on a 64-bit machine (Alpha).
- This makes (binary) data non-portable.

Integers

- All data types represented by 0's and 1's.
- An integer value:

$$
j=\sum_{i=1}^{N} s_{i} \times 2^{N-i}
$$

- $N=\#$ of bits in word
- $s_{i}=$ value of bit i in binary string s
- e.g. $00000110=2^{2}+2^{1}=6$ for 8-bit word.
- Use "two's complement" method for sign.
Integers, Cont'cl
- Largest value that can be represented is $2^{N}-1$.
- For 32-bit word this is 4,294,967,295.
- Arithmetic with integers is exact, except:
- When division results in remainder.
- Result exceeds largest representable integer

$$
\text { e.g. } 2 \times 10^{9}+3 \times 10^{9}=\text { overflow error }
$$

- Note multiplication by 2's can be achieved by left-shift, which is very fast (in C: "<<" operator).

T'vo's Complement

- Exploits finite size of data representations (cyclic groups) and properties of binary arithmetic.
- To get negative of binary number, invert all bits and add 1 to the result.

$$
\begin{aligned}
& \text { e.g. } 1=000000001 \text { in } 8 \text {-bit } \\
& \quad \begin{array}{l}
\text { invert bits: } \\
\text { add 1: } \\
\text { ad111111110 } \\
\text { result: } \\
0
\end{array} 11111111111=-1
\end{aligned}
$$

- In 8 bits, signed char ranges from -128 to +127 .

$$
\text { Negetive Powers of } 2
$$

- Binary notation can be extended to cover negative powers of 2, e.g. "110.101" is:

$$
1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{-1}+1 \times 2^{-3}=6.625
$$

- Can represent real numbers by specifying some location in the word as the "binary point" \rightarrow fixed-point representation.
- In practice, use some bits for an exponent \rightarrow floating-point representation.

Filoetts

- For most machines these days, real numbers are represented by floating-point format:

$$
\begin{array}{ll}
& x=s \times M \times B^{e-E} \\
s & =\text { sign } \quad B=\text { base (usually } 2, \text { sometimes 16) } \\
M & =\text { mantissa } \quad e=\text { exponent } \\
E & =\text { bias, usually } 127 .
\end{array}
$$

- In past, manufacturers used different number of bits for each of M and $e \rightarrow$ non-portable code.

Floets, Conit'd

- Currently, most manufacturers adopt IEEE standard:
$-s=1^{\text {st }}$ bit
- Next 8 bits are e
- Last 23 bits are M, expressed as a binary fraction, either 1.F, or, if $\mathrm{e}=0,0 . \mathrm{F}$, where F is in base 2 .
- Largest single-precision float $\mathrm{f}_{\max }=2^{127} \approx 10^{38}$.
- Smallest (and least precise!) $\mathrm{f}_{\text {min }}=2^{-149} \approx 10^{-45}$.

Round-ofif Emror

- Not all values along real axis can be represented.
- There are 10^{38} integers between $\mathrm{f}_{\text {min }} \& \mathrm{f}_{\text {max }}$, but only $2^{32} \approx 10^{9}$ bit patterns.

- Values $<\left|10^{-45}\right|$ result in "underflow" error.
- If value cannot be represented, next nearest value is produced. Difference between desired and actual value is called "round-off error" (RE).
Round-off Emror, Contel
- Smallest value e_{m} for which $1+\mathrm{e}_{\mathrm{m}}>1$ is called "machine accuracy", typically $\sim 10^{-7}$ for 32 bits.
- Double precision greatly reduces $\mathrm{e}_{\mathrm{m}}\left(\sim 10^{-16}\right)$.
- RE accumulates in a calculation:
- Random walk: total error $\mathrm{N}^{1 / 2} \mathrm{e}_{\mathrm{m}}$ after N operations.
- But algorithms rarely random \rightarrow linear error Ne_{m}.
Round-off Error, Cont'd
- Subtraction of two very nearly equal numbers can give rise to large RE.
e.g. Solution of quadratic equation...

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

...can go badly wrong whenever $a c \ll b^{2}$ (Cf. PS\#2).

- RE cannot be avoided-it is a consequence of using a finite number of bits to represent real values.

Truncetion Eirror

- In practice, most numerical algorithms approximate desired solution with a finite number of artithmetic operations.
e.g. evaluating integral by quadrature
summing series using finite number of terms
- Difference between true solution and numerical approximation to solution is called "truncation error" (TE).
Truncetion Error, Cont'd
- TE exists even on "perfect" machine with no RE.
- TE is under programmer's control; much effort goes into reducing it.
- Usually RE and TE do not interact.
- Sometimes TE can amplify RE until it swamps calculation. Solution is then called unstable.
e.g. Integer powers of Golden Mean (Cf. PS\#2).

