Numerical Linear Algebra

- Probably the simplest kind of problem.
- Occurs in many contexts, often as part of larger problem.
- Symbolic manipulation packages can do linear algebra "analytically" (e.g. Mathematica, Maple).
- Numerical methods needed when:
 - Number of equations very large
 - Coefficients all numerical

Linear Systems

• Write linear system as:

$$a_{11}x_{1} + a_{12}x_{2} + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + a_{2n}x_{n} = b_{2}$$

$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + a_{mn}x_{n} = b_{m}$$

- This system has *n* unknowns and *m* equations.
- If n = m, system is closed.
- If any equation is a linear combination of any others, equations are <u>degenerate</u> and system is <u>singular</u>.*
 * Singular Value Decomposition (SVD) NBiC 2.6

*see Singular Value Decomposition (SVD), NRiC 2.6.

Numerical Constraints

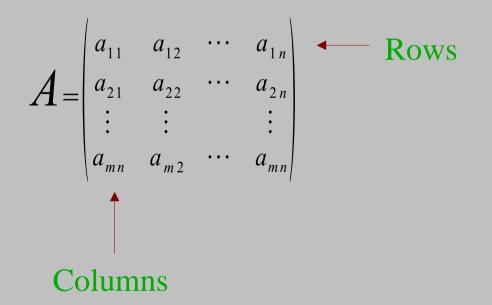
- Numerical methods also have problems when:
 - 1) Equations are degenerate "within round-off error".
 - 2) Accumulated round-off errors swamp solution (magnitude of *a*'s and *x*'s varies wildly).
- For n, m < 50, single precision usually OK.
- For n, m < 200, double precision usually OK.
- For 200 < *n*,*m* < few thousand, solutions possible only for sparse systems (lots of *a*'s zero).

Matrix Form

• Write system in matrix form:

 $A \mathbf{x} = \mathbf{b}$

where:



Matrix Data Representation

• Recall, C stores data in <u>row-major</u> form:

 $a_{11}, a_{12}, \dots, a_{1n}; a_{21}, a_{22}, \dots, a_{2n}; \dots; a_{m1}, a_{m2}, \dots, a_{mn}$

 If using "pointer to array of pointers to rows" scheme in C, can reference entire rows by first index, e.g. 3rd row = a [2].

x Recall in C array indices start at zero!!

• FORTRAN stores data in <u>column-major</u> form:

 $a_{11}, a_{21}, \dots, a_{m1}; a_{12}, a_{22}, \dots, a_{m2}; \dots; a_{1n}, a_{2n}, \dots, a_{mn}$

Note on Numerical Recipes in C

- The canned routines in NRiC make use of special functions defined in nrutil.c (header nrutil.h).
 - In particular, arrays and matrices are allocated dynamically with indices starting at 1, not 0.
 - If you want to interface with the NRiC routines, but prefer the C array index convention, pass arrays by subtracting 1 from the pointer address (i.e. pass p-1 instead of p) and pass matrices by using the functions convert_matrix() and free_convert_matrix() in nrutil.c (see NRiC 1.2 for more information).

Tasks of Linear Algebra

- We will consider the following tasks:
 - 1) Solve $A\mathbf{x} = \mathbf{b}$, given A and **b**.
 - 2) Solve $A\mathbf{x}_{i} = \mathbf{b}_{i}$ for multiple \mathbf{b}_{i} 's.
 - 3) Calculate A^{-1} , where $A^{-1}A = I$, the identity matrix.

4) Calculate determinant of *A*, det(*A*).

- Large packages of routines available for these tasks, e.g. LINPACK, LAPACK (public domain); IMSL, NAG libraries (commercial).
- We will look at methods assuming n = m.

The Augmented Matrix

• The equation $A\mathbf{x} = \mathbf{b}$ can be generalized to a form better suited to efficient manipulation:

$$A|\mathbf{b}\rangle = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & | & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & | & b_2 \\ \vdots & \vdots & & \vdots & | & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & | & b_n \end{vmatrix}$$

- The system can be solved by performing operations on the augmented matrix.
- The x_i's are placeholders that can be omitted until the end of the computation.

Elementary Row Operations

- The following row operations can be performed on an augmented matrix without changing the solution of the underlying system of equations:
 - I. Interchange two rows.
 - II. Multiply a row by a nonzero real number.
 - III. Add a multiple of one row to another row.
- The idea is to apply these operations in sequence until the system of equations is trivially solved.

The Generalized Matrix Equation

• Consider the generalized linear matrix equation:

<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	a_{14}	$ x_{11} $	x ₁₂	<i>x</i> ₁₃	y_{11}	<i>Y</i> ₁₂	<i>Y</i> ₁₃	<i>y</i> ₁₄		<i>b</i> ₁₁	$ b_{12}$	b ₁₃	1	0	0	0
<i>a</i> ₂₁	<i>a</i> ₂₂	<i>a</i> ₂₃	<i>a</i> ₂₄	x ₂₁	x ₂₂	x ₂₃	y_{21}	<i>Y</i> ₂₂	<i>Y</i> ₂₃	<i>Y</i> ₂₄	_	<i>b</i> ₂₁	b ₂₂	b ₂₃	0	1	0	0
<i>a</i> ₃₁	<i>a</i> ₃₂	<i>a</i> ₃₃	<i>a</i> ₃₄	x ₃₁	x ₃₂	x ₃₃	<i>Y</i> ₃₁	<i>Y</i> ₃₂	<i>Y</i> ₃₃	<i>Y</i> ₃₄		<i>b</i> ₃₁	b ₃₂	b ₃₃	0	0	1	0
<i>a</i> ₄₁	<i>a</i> ₄₂	<i>a</i> ₄₃	a_{44}	x ₄₁	x ₄₂	<i>x</i> ₄₃	${\mathcal Y}_{41}$	<i>Y</i> ₄₂	<i>Y</i> ₄₃	<i>Y</i> ₄₄		<i>b</i> ₄₁	b ₄₂	b ₄₃	0	0	0	1

coefficients solutions and inverse

RHS and identity

• Its solution simultaneously solves the linear sets:

 $A\mathbf{x}_1 = \mathbf{b}_1, A\mathbf{x}_2 = \mathbf{b}_2, A\mathbf{x}_3 = \mathbf{b}_3, \text{ and } AY = I,$

where the \mathbf{x}_i 's and \mathbf{b}_i 's are column vectors.

Gauss-Jordan Elimination

- GJE uses one or more elementary row operations to reduce matrix *A* to the identity matrix.
- The RHS of the generalized equation becomes the solution set and *Y* becomes A^{-1} .
- Disadvantages:
 - 1) Requires all \mathbf{b}_i 's to be stored and manipulated at same time \Rightarrow memory hog.
 - 2) Don't always need A^{-1} .
- Other methods more efficient, but good backup.

Gauss-Jordan Elimination: Procedure

• Start with simple augmented matrix as example:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & | & b_1 \\ a_{21} & a_{22} & a_{23} & | & b_2 \\ a_{31} & a_{32} & a_{33} & | & b_3 \end{vmatrix} \bullet \operatorname{Row} \mathbf{a}_1 | \mathbf{b}_1$$

- Divide first row $(\mathbf{a}_1 | \mathbf{b}_1)$ by first element \mathbf{a}_{11} .
- Subtract \mathbf{a}_{i1} ($\mathbf{a}_1 | \mathbf{b}_1$) from all other rows:

$$\begin{pmatrix} 1 & a_{12}/a_{11} & a_{13}/a_{11} & | & b_1/a_{11} \\ 0 & a_{22}-a_{21}(a_{12}/a_{11}) & a_{23}-a_{21}(a_{13}/a_{11}) & | & b_2-a_{21}(b_1/a_{11}) \\ 0 & a_{32}-a_{31}(a_{12}/a_{11}) & a_{33}-a_{31}(a_{13}/a_{11}) & | & b_3-a_{31}(b_1/a_{11}) \end{pmatrix}$$
First column of identity matrix

• Continue process for 2nd row, etc.

GJE Procedure, Cont'd

- Problem occurs if leading diagonal element ever becomes <u>zero</u>.
- Also, procedure is numerically unstable!
- Solution: use "pivoting" rearrange remaining rows (partial pivoting) or rows & columns (full pivoting - requires permutation!) so largest coefficient is in diagonal position.
- Best to "normalize" equations (implicit pivoting).

Gaussian Elimination with Backsubstitution

• If, during GJE, only subtract rows <u>below</u> pivot, will be left with a triangular matrix:

"Gaussian
Elimination"

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

- Solution for x_3 is then trivial: $x_3 = b_3'/a_{33}'$.
- Substitute into 2^{nd} row to get x_2 .
- Substitute $x_3 \& x_2$ into 1st row to get x_1 .
- Faster than GJE, but still memory hog.

LU Decomposition

 Suppose we can write A as a product of two matrices: A = LU, where L is <u>lower triangular</u> and U is <u>upper triangular</u>:

$$L = \begin{pmatrix} \times & 0 & 0 \\ \times & \times & 0 \\ \times & \times & \times \end{pmatrix} \qquad \qquad U = \begin{pmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & 0 & \times \end{pmatrix}$$

- Then Ax = (LU)x = L(Ux) = b, i.e. must solve,
 (1) Ly = b; (2) Ux = y
- Can <u>reuse</u> *L* & *U* for subsequent calculations.

LU Decomposition, Cont'd

- Why is this better?
 - Solving triangular matrices is easy: just use forward substitution for (1), backsubstitution for (2).
- Problem is, how to decompose A into L and U?
 - Expand matrix multiplication LU to get n^2 equations for $n^2 + n$ unknowns (elements of L and U plus n extras because diagonal elements counted twice).
 - Get an extra *n* equations by choosing $L_{ii} = 1$ (i = 1, n).
 - Then use <u>Crout's algorithm</u> for finding solution to these $n^2 + n$ equations "trivially" (NRiC 2.3).

LU Decomposition in NRiC

- The routines ludemp() and lubksb() perform LU decomposition and backsubstitution respectively.
- Can easily compute *A*⁻¹ (solve for the identity matrix column by column) and det(*A*) (find the product of the diagonal elements of the *LU* decomposed matrix) see NRiC 2.3.
- <u>WARNING</u>: for large matrices, computing det(*A*) can overflow or underflow the computer's floating-point dynamic range.

Iterative Improvement

- For large sets of linear equations Ax = b, roundoff error may become a problem.
- We want to know **x** but we only have $\mathbf{x} + \delta \mathbf{x}$, which is an exact solution to $A(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b}$.
- Subtract the exact solution and eliminate $\delta \mathbf{b}$:

 $A\delta \mathbf{x} = A(\mathbf{x} + \delta \mathbf{x}) - \mathbf{b}$

The RHS is known, hence can solve for δx.
 Subtract this from the wrong solution to get an improved solution (make sure to use doubles!).

Tridiagonal Matrices

Many systems can be written as (or reduced to):
 a_ix_{i-1} + b_ix_i + c_ix_{i+1} = d_i i = 1,n
 i.e. a tridiagonal matrix:

$$\begin{bmatrix} b_{1} & c_{1} & & & 0 & s \\ a_{2} & b_{2} & c_{2} & & & \\ & a_{3} & b_{3} & c_{3} & & \\ & & \ddots & \ddots & \ddots & \\ & & & a_{n-1} & b_{n-1} & c_{n-1} \\ 0 & s & & & a_{n} & b_{n} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{n-1} \\ x_{n} \end{bmatrix} = \begin{bmatrix} d_{1} \\ d_{2} \\ d_{3} \\ \vdots \\ d_{n-1} \\ d_{n} \end{bmatrix}$$

Here a_1 and c_n are associated with "boundary conditions" (i.e. x_0 and x_{n+1}).

Sparse Matrices

- *LU* decomposition and backsubstitution is very efficient for tri-di systems: O(n) operations as opposed to $O(n^3)$ in general case.
- Operations on sparse systems can be optimized.
 e.g. Tridiagonal
 Band diagonal with bandwidth M
 Block diagonal

Banded

• See NRiC 2.7 for various systems & techniques.

Iterative Methods

- For very large systems, direct solution methods (e.g. *LU* decomposition) are slow and RE prone.
- Often iterative methods much more efficient:
 - 1. Guess a trial solution \mathbf{x}^0
 - 2. Compute a correction $\mathbf{x}^1 = \mathbf{x}^0 + \delta \mathbf{x}$
 - 3. Iterate procedure until convergence, i.e. $|\delta \mathbf{x}| < \Delta$
- e.g. Congugate gradient method for sparse systems (NRiC 2.7).

Singular Value Decomposition

- Can diagnose or (nearly) solve singular or nearsingular systems.
- Used for solving linear least-squares problems.
- <u>Theorem</u>: any $m \times n$ matrix A can be written:

 $A = UWV^T$

where $U(m \times n) \& V(n \times n)$ are orthogonal and $W(n \times n)$ is a diagonal matrix.

• <u>Proof</u>: buy a good linear algebra textbook.

SVD, Cont'd

- The values W_i are zero or positive and are called the "singular values".
- The NRiC routine svdcmp() returns U, V, & W given A. You have to trust it (or test it yourself!).
 - Uses Householder reduction, QR diagonalization, etc.
- If *A* is square then we know:

 $A^{-1} = V [\text{diag}(1/W_i)] U^T$

• This is fine so long as no W_i is too small (or 0).

Definitions

- <u>Condition number</u> $\operatorname{cond}(A) = (\max W_i)/(\min W_i)$.
 - If $cond(A) = \infty$, A is <u>singular</u>.
 - If cond(A) very large $(10^6, 10^{12})$, A is <u>ill-conditioned</u>.
- Consider $A\mathbf{x} = \mathbf{b}$. If A is singular, there is some subspace of \mathbf{x} (the <u>nullspace</u>) such that $A\mathbf{x} = 0$.
- The <u>nullity</u> is the dimension of the nullspace.
- The subspace of **b** such that $A\mathbf{x} = \mathbf{b}$ is the <u>range</u>.
- The <u>rank</u> of *A* is the dimension of the range.

The Homogeneous Equation

- SVD constructs orthonormal bases for the nullspace and range of a matrix.
- Columns of *U* with corresponding non-zero *W_i* are an orthonormal basis for the range.
- Columns of V with corresponding zero W_i are an orthonormal basis for the nullspace.
- Hence immediately have solution for $A\mathbf{x} = 0$, i.e. the columns of *V* with corresponding zero W_i .

Residuals

- If b (≠ 0) lies in the range of A, then the singular equations do in fact have a solution.
- Even if **b** is outside the range of *A*, can get solution which minimizes residual $r = |A\mathbf{x} \mathbf{b}|$.
- Trick: replace $1/W_i$ by 0 if $W_i = 0$ and compute $\mathbf{x} = V [\text{diag} (1/W_i)] (U^T \mathbf{b})$
- Similarly, can set $1/W_i = 0$ if W_i very small.

Approximation of Matrices

• Can write $A = UWV^T$ as:

$$A_{ij} = \sum_{k=1}^{N} W_k U_{ik} V_{jk}$$

- If most of the singular values W_k are small, then A is well-approximated by only a few terms in the sum (strategy: sort W_k 's in descending order).
- For large memory savings, just store the columns of U and V corresponding to non-negligible W_k 's.
- Useful technique for digital image processing.