
Numerical Linear AlgebraNumerical Linear Algebra

 Probably the simplest kind of problem.
 Occurs in many contexts, often as part of larger

problem.
 Symbolic manipulation packages can do linear

algebra "analytically" (e.g. Mathematica, Maple).
 Numerical methods needed when:

 Number of equations very large

 Coefficients all numerical

Linear SystemsLinear Systems

 � � � =

 � � � =

⋮ ⋮
 � � � =

 Write linear system as:

 This system has n unknowns and m equations.

 If n = m, system is closed.

 If any equation is a linear combination of any others,
equations are degenerate and system is singular.*

*see Singular Value Decomposition (SVD), NRiC 2.6.

Numerical ConstraintsNumerical Constraints

 Numerical methods also have problems when:

1) Equations are degenerate "within round-off error".

2) Accumulated round-off errors swamp solution
(magnitude of a's and x's varies wildly).

 For n,m < 50, single precision usually OK.

 For n,m < 200, double precision usually OK.

 For 200 < n,m < few thousand, solutions possible
only for sparse systems (lots of a's zero).

Matrix FormMatrix Form

 Write system in matrix form:

where:
 =

= ⋯

 ⋯

⋮ ⋮ ⋮
 ⋯

Columns

Rows

Matrix Data RepresentationMatrix Data Representation

 Recall, C stores data in row-major form:

a
11

, a
12

, ..., a
1n

;

a

21
, a

22
, ..., a

2n
; ...; a

m1
, a

m2
, ..., a

mn

 If using "pointer to array of pointers to rows"
scheme in C, can reference entire rows by first
index, e.g. 3rd row = a[2].
 Recall in C array indices start at zero!!

 FORTRAN stores data in column-major form:

a
11

, a
21

, ..., a
m1

;

a

12
, a

22
, ..., a

m2
; ...; a

1n
, a

2n
, ..., a

mn

Note on Numerical Recipes in CNote on Numerical Recipes in C

 The canned routines in NRiC make use of special
functions defined in nrutil.c (header nrutil.h).
 In particular, arrays and matrices are allocated

dynamically with indices starting at 1, not 0.

 If you want to interface with the NRiC routines, but
prefer the C array index convention, pass arrays by
subtracting 1 from the pointer address (i.e. pass p-1
instead of p) and pass matrices by using the functions
convert_matrix() and free_convert_matrix()
in nrutil.c (see NRiC 1.2 for more information).

Tasks of Linear AlgebraTasks of Linear Algebra

 We will consider the following tasks:

1) Solve Ax = b, given A and b.

2) Solve Ax
i
 = b

i
 for multiple b

i
's.

3) Calculate A-1, where A-1A = I, the identity matrix.

4) Calculate determinant of A, det(A).

 Large packages of routines available for these
tasks, e.g. LINPACK, LAPACK (public domain);
IMSL, NAG libraries (commercial).

 We will look at methods assuming n = m.

The Augmented MatrixThe Augmented Matrix

 The equation Ax = b can be generalized to a form
better suited to efficient manipulation:

 The system can be solved by performing
operations on the augmented matrix.

 The xi's are placeholders that can be omitted until
the end of the computation.

 ∣ = ⋯ ∣

 ⋯ ∣

⋮ ⋮ ⋮ ∣ ⋮
 ⋯ ∣

Elementary Row OperationsElementary Row Operations

 The following row operations can be performed
on an augmented matrix without changing the
solution of the underlying system of equations:

I. Interchange two rows.

II. Multiply a row by a nonzero real number.

III. Add a multiple of one row to another row.

 The idea is to apply these operations in sequence
until the system of equations is trivially solved.

The Generalized Matrix EquationThe Generalized Matrix Equation

 Consider the generalized linear matrix equation:

 Its solution simultaneously solves the linear sets:

Ax1 = b1, Ax2 = b2, Ax3 = b3, and AY = I,

 where the xi's and bi's are column vectors.

 ∣ ∣ ∣

 ∣ ∣ ∣

 ∣ ∣ ∣

 ∣ ∣ ∣

= ∣ ∣ ∣

 ∣ ∣ ∣

 ∣ ∣ ∣

 ∣ ∣ ∣

Gauss-Jordan EliminationGauss-Jordan Elimination

 GJE uses one or more elementary row operations
to reduce matrix A to the identity matrix.

 The RHS of the generalized equation becomes the
solution set and Y becomes A-1.

 Disadvantages:

1) Requires all bi's to be stored and manipulated at same
time ⇒ memory hog.

2) Don't always need A-1.

 Other methods more efficient, but good backup.

Gauss-Jordan Elimination: ProcedureGauss-Jordan Elimination: Procedure

 Start with simple augmented matrix as example:

 Divide first row (a1|b1) by first element a11.

 Subtract ai1 (a1|b1) from all other rows:

 Continue process for 2nd row, etc.

 ∣

 ∣

 ∣

 / / ∣ /

 − / −/ ∣ −/
 − / −/ ∣ − /

Row a1|b1

Pivot row

First column of identity matrix

GJE Procedure, Cont'dGJE Procedure, Cont'd

 Problem occurs if leading diagonal element ever
becomes zero.

 Also, procedure is numerically unstable!
 Solution: use "pivoting" - rearrange remaining

rows (partial pivoting) or rows & columns (full
pivoting - requires permutation!) so largest
coefficient is in diagonal position.

 Best to "normalize" equations (implicit pivoting).

Gaussian Elimination with Gaussian Elimination with
BacksubstitutionBacksubstitution

 If, during GJE, only subtract rows below pivot,
will be left with a triangular matrix:

 Solution for x3 is then trivial: x3 = b3'/a33'.

 Substitute into 2nd row to get x2.

 Substitute x3 & x2 into 1st row to get x1.

 Faster than GJE, but still memory hog.

�

�

�

�

�

�

=

�

�

� "Gaussian

Elimination"

LULU Decomposition Decomposition

 Suppose we can write A as a product of two
matrices: A = LU, where L is lower triangular and
U is upper triangular:

 Then Ax = (LU)x = L(Ux) = b, i.e. must solve,

(1) Ly = b; (2) Ux = y

 Can reuse L & U for subsequent calculations.

 = ×
× ×
× × × = × × ×

 × ×
 ×

LULU Decomposition, Cont'd Decomposition, Cont'd

 Why is this better?
 Solving triangular matrices is easy: just use forward

substitution for (1), backsubstitution for (2).

 Problem is, how to decompose A into L and U?
 Expand matrix multiplication LU to get n2 equations

for n2 + n unknowns (elements of L and U plus n
extras because diagonal elements counted twice).

 Get an extra n equations by choosing Lii = 1 (i = 1,n).

 Then use Crout's algorithm for finding solution to
these n2 + n equations "trivially" (NRiC 2.3).

LULU Decomposition in NRiC Decomposition in NRiC

 The routines ludcmp() and lubksb() perform LU
decomposition and backsubstitution respectively.

 Can easily compute A-1 (solve for the identity
matrix column by column) and det(A) (find the
product of the diagonal elements of the LU
decomposed matrix) - see NRiC 2.3.

 WARNING: for large matrices, computing det(A)
can overflow or underflow the computer's
floating-point dynamic range.

Iterative ImprovementIterative Improvement

 For large sets of linear equations Ax = b, roundoff
error may become a problem.

 We want to know x but we only have x + δx,
which is an exact solution to A(x + δx) = b + δb.

 Subtract the exact solution and eliminate δb:

 Aδx = A(x + δx) - b

 The RHS is known, hence can solve for δx.
Subtract this from the wrong solution to get an
improved solution (make sure to use doubles!).

Tridiagonal MatricesTridiagonal Matrices

 Many systems can be written as (or reduced to):

 ai xi-1 + bi xi + ci xi+1 = di i = 1,n

 i.e. a tridiagonal matrix:

 Here a1 and cn are associated with "boundary
conditions" (i.e. x0 and xn+1).

[
 �

⋱ ⋱ ⋱
− − −

 �

][

⋮
 −

]= [

⋮
 −

]

Sparse MatricesSparse Matrices

 LU decomposition and backsubstitution is very
efficient for tri-di systems: O(n) operations as
opposed to O(n3) in general case.

 Operations on sparse systems can be optimized.

e.g. Tridiagonal

 Band diagonal with bandwidth M

 Block diagonal

 Banded

 See NRiC 2.7 for various systems & techniques.

Iterative MethodsIterative Methods

 For very large systems, direct solution methods
(e.g. LU decomposition) are slow and RE prone.

 Often iterative methods much more efficient:

1. Guess a trial solution x0

2. Compute a correction x1 = x0 + δx

3. Iterate procedure until convergence, i.e. |δx| < ∆
 e.g. Congugate gradient method for sparse

systems (NRiC 2.7).

Singular Value DecompositionSingular Value Decomposition

 Can diagnose or (nearly) solve singular or near-
singular systems.

 Used for solving linear least-squares problems.

 Theorem: any m × n matrix A can be written:

 A = UWV T

 where U (m × n) & V (n × n) are orthogonal and
W (n × n) is a diagonal matrix.

 Proof: buy a good linear algebra textbook.

SVD, Cont'dSVD, Cont'd

 The values Wi are zero or positive and are called
the "singular values".

 The NRiC routine svdcmp() returns U, V, & W
given A. You have to trust it (or test it yourself!).
 Uses Householder reduction, QR diagonalization, etc.

 If A is square then we know:

 A-1 = V [diag(1/Wi)] U
 T

 This is fine so long as no Wi is too small (or 0).

DefinitionsDefinitions

 Condition number cond(A) = (max Wi)/(min Wi).

 If cond(A) = ∞, A is singular.

 If cond(A) very large (106, 1012), A is ill-conditioned.

 Consider Ax = b. If A is singular, there is some
subspace of x (the nullspace) such that Ax = 0.

 The nullity is the dimension of the nullspace.
 The subspace of b such that Ax = b is the range.
 The rank of A is the dimension of the range.

The Homogeneous EquationThe Homogeneous Equation

 SVD constructs orthonormal bases for the
nullspace and range of a matrix.

 Columns of U with corresponding non-zero Wi
are an orthonormal basis for the range.

 Columns of V with corresponding zero Wi are an
orthonormal basis for the nullspace.

 Hence immediately have solution for Ax = 0, i.e.
the columns of V with corresponding zero Wi.

ResidualsResiduals

 If b (≠ 0) lies in the range of A, then the singular
equations do in fact have a solution.

 Even if b is outside the range of A, can get
solution which minimizes residual r = |Ax - b|.

 Trick: replace 1/Wi by 0 if Wi = 0 and compute

 x = V [diag (1/Wi)] (U
 T b)

 Similarly, can set 1/Wi = 0 if Wi very small.

Approximation of MatricesApproximation of Matrices

 Can write A = UWV T as:

 If most of the singular values Wk are small, then A
is well-approximated by only a few terms in the
sum (strategy: sort Wk's in descending order).

 For large memory savings, just store the columns
of U and V corresponding to non-negligible Wk's.

 Useful technique for digital image processing.

=∑
=

