Numericen Linesir Algebra

- Probably the simplest kind of problem.
- Occurs in many contexts, often as part of larger problem.
- Symbolic manipulation packages can do linear algebra "analytically" (e.g. Mathematica, Maple).
- Numerical methods needed when:
- Number of equations very large
- Coefficients all numerical

Linesir Systems

- Write linear system as:

$$
\begin{array}{r}
a_{11} x_{1}+a_{12} x_{2}++a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}++a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}++a_{m n} x_{n}=b_{m}
\end{array}
$$

- This system has n unknowns and m equations.
- If $n=m$, system is closed.
- If any equation is a linear combination of any others, equations are degenerate and system is singular.*
*see Singular Value Decomposition (SVD), NRiC 2.6.
Numericell Constrints
- Numerical methods also have problems when:

1) Equations are degenerate "within round-off error".
2) Accumulated round-off errors swamp solution (magnitude of a 's and x 's varies wildly).

- For $n, m<50$, single precision usually OK.
- For $n, m<200$, double precision usually OK.
- For 200 < n, m < few thousand, solutions possible only for sparse systems (lots of a 's zero).

MEatrix Fiom

- Write system in matrix form:

$$
A \mathbf{x}=\mathbf{b}
$$

where:

$$
A=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m n} & a_{m 2} & \cdots & a_{m n}
\end{array}\right| \leftarrow \text { Rows }
$$

Columns

Mentrix Detel Pepresentetion

- Recall, C stores data in row-major form:

$$
a_{11}, a_{12}, \ldots, a_{1 n} ; a_{21}, a_{22}, \ldots, a_{2 n} ; \ldots ; a_{m 1}, a_{m 2}, \ldots, a_{m n}
$$

- If using "pointer to array of pointers to rows" scheme in C, can reference entire rows by first index, e.g. $3^{\text {rd }}$ row $=a[2]$.

\times Recall in C array indices start at zero!!

- FORTRAN stores data in column-major form:

$$
a_{11}, a_{21}, \ldots, a_{m 1} ; a_{12}, a_{22}, \ldots, a_{m 2} ; \ldots ; a_{1 n}, a_{2 n}, \ldots, a_{m n}
$$

Note on Numericell Recipes in C'

- The canned routines in NRiC make use of special functions defined in nrutil.c (header nrutil.h).
- In particular, arrays and matrices are allocated dynamically with indices starting at 1 , not 0 .
- If you want to interface with the NRiC routines, but prefer the C array index convention, pass arrays by subtracting 1 from the pointer address (i.e. pass $p-1$ instead of p) and pass matrices by using the functions convert_matrix() and free_convert_matrix() in nrutil.c (see NRiC 1.2 for more information).
Tesisls of Linesir Algebrel
- We will consider the following tasks:

1) Solve $A \mathbf{x}=\mathbf{b}$, given A and \mathbf{b}.
2) Solve $A \mathbf{x}_{i}=\mathbf{b}_{i}$ for multiple \mathbf{b}_{i} 's.
3) Calculate A^{-1}, where $A^{-1} A=I$, the identity matrix.
4) Calculate determinant of $A, \operatorname{det}(A)$.

- Large packages of routines available for these tasks, e.g. LINPACK, LAPACK (public domain); IMSL, NAG libraries (commercial).
- We will look at methods assuming $n=m$.

The Augnented MEatrix

- The equation $A \mathbf{x}=\mathbf{b}$ can be generalized to a form better suited to efficient manipulation:

$$
(A \mid \mathbf{b})=\left|\begin{array}{cccc:c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & b_{n n}
\end{array}\right|
$$

- The system can be solved by performing operations on the augmented matrix.
- The \mathbf{x}_{i} 's are placeholders that can be omitted until the end of the computation.
Eilementery Pow Operations
- The following row operations can be performed on an augmented matrix without changing the solution of the underlying system of equations:
I. Interchange two rows.
II. Multiply a row by a nonzero real number.
III. Add a multiple of one row to another row.
- The idea is to apply these operations in sequence until the system of equations is trivially solved.

The Generalized Matrix Equation

- Consider the generalized linear matrix equation:
- Its solution simultaneously solves the linear sets:

$$
A \mathbf{x}_{1}=\mathbf{b}_{1}, A \mathbf{x}_{2}=\mathbf{b}_{2}, A \mathbf{x}_{3}=\mathbf{b}_{3} \text {, and } A Y=I \text {, }
$$

where the \mathbf{x}_{i} 's and \mathbf{b}_{i} 's are column vectors.
Geuss-Jorden Eiliminetion

- GJE uses one or more elementary row operations to reduce matrix A to the identity matrix.
- The RHS of the generalized equation becomes the solution set and Y becomes A^{-1}.
- Disadvantages:

1) Requires all \mathbf{b}_{i} 's to be stored and manipulated at same time \Rightarrow memory hog.
2) Don't always need A^{-1}.

- Other methods more efficient, but good backup.

Genuss-Jorden Eilimingtion: Procedure

- Start with simple augmented matrix as example:

$$
\left|\begin{array}{lll:l}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
a_{31} & a_{32} & a_{33} & b_{3}
\end{array}\right| \longleftarrow \text { Row } \mathbf{a}_{1} \mid \mathbf{b}_{1}
$$

- Divide first row $\left(\mathbf{a}_{1} \mid \mathbf{b}_{1}\right)$ by first element a_{11}.
- Subtract $\mathrm{a}_{i 1}\left(\mathbf{a}_{1} \mid \mathbf{b}_{1}\right)$ from all other rows:

$$
\left(\begin{array}{ccc:c}
1 & a_{12} / a_{11} & a_{13} / a_{11} & b_{1} / a_{11} \\
0 & a_{22}-a_{21}\left(a_{12} / a_{11}\right) & a_{23}-a_{21}\left(a_{13} / a_{11}\right) & b_{2}-a_{21}\left(b_{1} / a_{11}\right) \\
0 & a_{32}-a_{31}\left(a_{12} / a_{11}\right) & a_{33}-a_{31}\left(a_{13} / a_{11}\right) & b_{3}-a_{31}\left(b_{1} / a_{11}\right)
\end{array}\right) \leftarrow \text { Pivot row }
$$

First column of identity matrix

- Continue process for $2^{\text {nd }}$ row, etc.

CJJE Procedure, Conit'd

- Problem occurs if leading diagonal element ever becomes zero.
- Also, procedure is numerically unstable!
- Solution: use "pivoting" - rearrange remaining rows (partial pivoting) or rows \& columns (full pivoting - requires permutation!) so largest coefficient is in diagonal position.
- Best to "normalize" equations (implicit pivoting).

Crenssign Eilimingtion with Beackubstitution

- If, during GJE, only subtract rows below pivot, will be left with a triangular matrix:

$$
\underset{\text { Elimination" }}{\text { "Gaussian }}\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

- Solution for x_{3} is then trivial: $x_{3}=b_{3}{ }^{\prime} / a_{33}{ }^{\prime}$.
- Substitute into $2^{\text {nd }}$ row to get x_{2}.
- Substitute $x_{3} \& x_{2}$ into $1^{\text {st }}$ row to get x_{1}.
- Faster than GJE, but still memory hog.

LU Decomposition

- Suppose we can write A as a product of two matrices: $A=L U$, where L is lower triangular and U is upper triangular:

$$
L=\left(\begin{array}{ccc}
\times & 0 & 0 \\
\times & \times & 0 \\
\times & \times & \times
\end{array}\right) \quad U=\left(\begin{array}{ccc}
\times & \times & \times \\
0 & \times & \times \\
0 & 0 & \times
\end{array}\right)
$$

- Then $A \mathbf{x}=(L U) \mathbf{x}=L(U \mathbf{x})=\mathbf{b}$, i.e. must solve,
(1) $L \mathbf{y}=\mathbf{b}$; (2) $U \mathbf{x}=\mathbf{y}$
- Can reuse L \& U for subsequent calculations.

LU Decomposition, Cont'd

- Why is this better?
- Solving triangular matrices is easy: just use forward substitution for (1), backsubstitution for (2).
- Problem is, how to decompose A into L and U ?
- Expand matrix multiplication $L U$ to get n^{2} equations for $n^{2}+n$ unknowns (elements of L and U plus n extras because diagonal elements counted twice).
- Get an extra n equations by choosing $L_{i i}=1(i=1, n)$.
- Then use Crout's algorithm for finding solution to these $n^{2}+n$ equations "trivially" (NRiC 2.3).
LU Decomposition in INRC'
- The routines ludcmp () and lubksb() perform $L U$ decomposition and backsubstitution respectively.
- Can easily compute A^{-1} (solve for the identity matrix column by column) and $\operatorname{det}(A)$ (find the product of the diagonal elements of the $L U$ decomposed matrix) - see NRiC 2.3.
- WARNING: for large matrices, computing $\operatorname{det}(A)$ can overflow or underflow the computer's floating-point dynamic range.
Iteretive Inprovenent
- For large sets of linear equations $A \mathbf{x}=\mathbf{b}$, roundoff error may become a problem.
- We want to know \mathbf{x} but we only have $\mathbf{x}+\delta \mathbf{x}$, which is an exact solution to $A(\mathbf{x}+\delta \mathbf{x})=\mathbf{b}+\delta \mathbf{b}$.
- Subtract the exact solution and eliminate $\delta \mathbf{b}$:

$$
A \delta \mathbf{x}=A(\mathbf{x}+\delta \mathbf{x})-\mathbf{b}
$$

- The RHS is known, hence can solve for $\delta \mathbf{x}$. Subtract this from the wrong solution to get an improved solution (make sure to use doubles!).

Tridieggoneil IVEtricess

- Many systems can be written as (or reduced to):

$$
a_{i} x_{i-1}+b_{i} x_{i}+c_{i} x_{i+1}=d_{i} \quad i=1, n
$$

i.e. a tridiagonal matrix:

$$
\left[\begin{array}{cccccccc}
b_{1} & c_{1} & & & & & 0 & s \\
a_{2} & b_{2} & c_{2} & & & & \\
& a_{3} & b_{3} & c_{3} & & & \\
& & \ddots & \ddots & \ddots & & \\
& & & & a_{n-1} & b_{n-1} & c_{n-1} \\
0 & s & & & a_{n} & b_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
d_{1} \\
d_{2} \\
d_{3} \\
\vdots \\
d_{n-1} \\
d_{n}
\end{array}\right]
$$

Here a_{1} and c_{n} are associated with "boundary conditions" (i.e. x_{0} and x_{n+1}).
Sperse IMetrices

- $L U$ decomposition and backsubstitution is very efficient for tri-di systems: $O(n)$ operations as opposed to $O\left(n^{3}\right)$ in general case.
- Operations on sparse systems can be optimized. e.g. Tridiagonal

Band diagonal with bandwidth M
Block diagonal
Banded

- See NRiC 2.7 for various systems \& techniques.

Itergtive MIethods

- For very large systems, direct solution methods (e.g. $L U$ decomposition) are slow and RE prone.
- Often iterative methods much more efficient:

1. Guess a trial solution \mathbf{x}^{0}
2. Compute a correction $\mathbf{x}^{1}=\mathbf{x}^{0}+\delta \mathbf{x}$
3. Iterate procedure until convergence, i.e. $|\delta \mathbf{x}|<\Delta$

- e.g. Congugate gradient method for sparse systems (NRiC 2.7).
Singuiler Veilue Decomposition
- Can diagnose or (nearly) solve singular or nearsingular systems.
- Used for solving linear least-squares problems.
- Theorem: any $m \times n$ matrix A can be written:

$$
A=U W V^{T}
$$

where $U(m \times n)$ \& $V(n \times n)$ are orthogonal and $W(n \times n)$ is a diagonal matrix.

- Proof: buy a good linear algebra textbook.

SVD, C'onitd

- The values W_{i} are zero or positive and are called the "singular values".
- The NRiC routine svdcmp () returns $U, V, \& W$ given A. You have to trust it (or test it yourself!).
- Uses Householder reduction, QR diagonalization, etc.
- If A is square then we know:

$$
A^{-1}=V\left[\operatorname{diag}\left(1 / W_{i}\right)\right] U^{T}
$$

- This is fine so long as no W_{i} is too small (or 0).
Definitions
- Condition number cond $(A)=\left(\max W_{i}\right) /\left(\min W_{i}\right)$.
- If $\operatorname{cond}(A)=\infty, A$ is singular.
- If cond (A) very large $\left(10^{6}, 10^{12}\right), A$ is ill-conditioned.
- Consider $A \mathbf{x}=\mathbf{b}$. If A is singular, there is some subspace of \mathbf{x} (the nullspace) such that $A \mathbf{x}=0$.
- The nullity is the dimension of the nullspace.
- The subspace of \mathbf{b} such that $A \mathbf{x}=\mathbf{b}$ is the range.
- The rank of A is the dimension of the range.
The Fomogeneous Equetion
- SVD constructs orthonormal bases for the nullspace and range of a matrix.
- Columns of U with corresponding non-zero W_{i} are an orthonormal basis for the range.
- Columns of V with corresponding zero W_{i} are an orthonormal basis for the nullspace.
- Hence immediately have solution for $A \mathbf{x}=0$, i.e. the columns of V with corresponding zero W_{i}.

Residurils

- If $\mathbf{b}(\neq 0)$ lies in the range of A, then the singular equations do in fact have a solution.
- Even if \mathbf{b} is outside the range of A, can get solution which minimizes residual $r=|A \mathbf{x}-\mathbf{b}|$.
- Trick: replace $1 / W_{i}$ by 0 if $W_{i}=0$ and compute

$$
\mathbf{x}=V\left[\operatorname{diag}\left(1 / W_{i}\right)\right]\left(U^{T} \mathbf{b}\right)
$$

- Similarly, can set $1 / W_{i}=0$ if W_{i} very small.
Approximation of M/Etrices
- Can write $A=U W V^{T}$ as:

$$
A_{i j}=\sum_{k=1}^{N} W_{k} U_{i k} V_{j k}
$$

- If most of the singular values W_{k} are small, then A is well-approximated by only a few terms in the sum (strategy: sort W_{k}^{\prime} 's in descending order).
- For large memory savings, just store the columns of U and V corresponding to non-negligible W_{k} 's.
- Useful technique for digital image processing.

