
Modeling of DataModeling of Data

● NRiC Chapter 15.
● Model depends on adjustable parameters.
● Can be used for "constrained interpolation".
● Basic approach:

1. Choose figure-of-merit function (e.g. 2).

2. Adjust best-fit parameters: minimize merit function.

3. Compute error estimates for parameters.

4. Compute goodness-of-fit.

Least Squares FittingLeast Squares Fitting

● Suppose we want to fit N data points (xi,yi) with a
function that depends on M parameters aj and that
each data point has a standard deviation i. The
maximum likelihood estimate of the model
parameters is obtained by minimizing:

● Assuming the errors are normally distributed, a
"good fit" has 2 ~ , where  = N -M.

=∑
=

  

−   


 


�� � 










Fitting Data to a Straight LineFitting Data to a Straight Line

● For this case the model is simply:

 y(x) = y(x; a, b) = a + bx

● Derive formula for best-fit parameters by setting
∂2/∂a = 0 = ∂2/∂b.

● Derive uncertainties in a and b using:

● Want Q = gammq((N -2)/2,2/2) > 0.001.




 =∑
=






 ∂ 

∂ 





General Linear Least SquaresGeneral Linear Least Squares

● Can generalize to any linear combination:

 e.g. y(x) = a1 + a2x + a3x
2 + ... + aMxM-1.

● Define N × M design matrix Aij = Xj(xi)/i.

● Also define vector b of length N: bi = yi/i and
vector a of length M: ai = a1,...,aM.

● Then we wish to find a that minimizes:

 2 = ∣Aa -b∣2 ← This is what SVD solves!

   =∑
=








  

General Linear Least Squares, Cont'dGeneral Linear Least Squares, Cont'd

● Recall for SVD we had A = UWVT.
● Rewriting the SVD solution we get:

 where U(j) and V(j) denote columns of U and V.

● As before, if wj is small (or zero), can omit.

– Useful because least-squares problems are both
overdetermined (N > M) and underdetermined
(ambiguous combinations of parameters exist)!

 =∑
=

    



   

Nonlinear ModelsNonlinear Models

● Suppose model depends nonlinearly on the aj's...

 e.g. y(x) = a1 exp(-a2 x2).

● Still define 2, but must proceed iteratively:

– Use anext = acur - ∇2(acur) far from minimum
(steepest descent), where  is a constant.

– Use anext = acur - D
-1[∇2(acur)] close to minimum,

where D is the Hessian matrix.

– The Levenberg-Marquardt method adjusts  to
smooth the transition between these two regimes.

Levenberg-Marquardt MethodLevenberg-Marquardt Method

● NRiC provides two routines, mrqmin() and
mrqcof(), that implement the L-M method.

● The user must provide a function that computes y
(xi) as well as all the partial derivatives ∂y/∂aj
evaluated at xi.

● The routine mrqmin() is called iteratively until a
successful step (i.e. one in which  gets smaller)
changes 2 by less than a fractional amount, like
0.001 (no point in doing better).

