
Modeling of DataModeling of Data

● NRiC Chapter 15.
● Model depends on adjustable parameters.
● Can be used for "constrained interpolation".
● Basic approach:

1. Choose figure-of-merit function (e.g. 2).

2. Adjust best-fit parameters: minimize merit function.

3. Compute error estimates for parameters.

4. Compute goodness-of-fit.



Least Squares FittingLeast Squares Fitting

● Suppose we want to fit N data points (xi,yi) with a 
function that depends on M parameters aj and that 
each data point has a standard deviation i. The 
maximum likelihood estimate of the model 
parameters is obtained by minimizing:

● Assuming the errors are normally distributed, a 
"good fit" has 2 ~ , where  = N -M.
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Fitting Data to a Straight LineFitting Data to a Straight Line

● For this case the model is simply:

   y(x) = y(x; a, b) = a + bx

● Derive formula for best-fit parameters by setting 
∂2/∂a = 0 = ∂2/∂b.

● Derive uncertainties in a and b using:

● Want Q = gammq((N -2)/2,2/2) > 0.001.
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General Linear Least SquaresGeneral Linear Least Squares

● Can generalize to any linear combination:

   e.g. y(x) = a1 + a2x + a3x
2 + ... + aMxM-1.

● Define N × M design matrix Aij = Xj(xi)/i.

● Also define vector b of length N: bi = yi/i and 
vector a of length M: ai = a1,...,aM.

● Then we wish to find a that minimizes:

   2 = ∣Aa -b∣2    ←   This is what SVD solves!
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General Linear Least Squares, Cont'dGeneral Linear Least Squares, Cont'd

● Recall for SVD we had A = UWVT.
● Rewriting the SVD solution we get:

   where U(j) and V(j) denote columns of U and V.

● As before, if wj is small (or zero), can omit.

– Useful because least-squares problems are both 
overdetermined (N > M) and underdetermined 
(ambiguous combinations of parameters exist)!
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Nonlinear ModelsNonlinear Models

● Suppose model depends nonlinearly on the aj's...

   e.g. y(x) = a1 exp(-a2 x2).

● Still define 2, but must proceed iteratively:

– Use anext = acur - ∇2(acur) far from minimum 
(steepest descent), where  is a constant.

– Use anext = acur - D
-1[∇2(acur)] close to minimum, 

where D is the Hessian matrix.

– The Levenberg-Marquardt method adjusts  to 
smooth the transition between these two regimes.



Levenberg-Marquardt MethodLevenberg-Marquardt Method

● NRiC provides two routines, mrqmin() and 
mrqcof(), that implement the L-M method.

● The user must provide a function that computes y
(xi) as well as all the partial derivatives ∂y/∂aj 
evaluated at xi.

● The routine mrqmin() is called iteratively until a 
successful step (i.e. one in which  gets smaller) 
changes 2 by less than a fractional amount, like 
0.001 (no point in doing better).


