Nonlinear Equations

- Often (most of the time??) the relevant system of equations is <u>not linear in the unknowns</u>.
- Then, cannot decompose as $A\mathbf{x} = \mathbf{b}$. Oh well.
- Instead write as:
 - (1) f(x) = 0 function of one variable (1-D)

(2) $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ $\mathbf{x} = (x_1, x_2, ..., x_n), \mathbf{f} = (f_1, f_2, ..., f_n) (n-D)$

• Not guaranteed to have <u>any</u> real solutions, but generally do for astrophysical problems.

Solutions in 1-D

- Generally, solving multi-D equations is <u>much</u> harder, so we'll start with the 1-D case first...
- By writing f(x) = 0 we have reduced the problem to solving for the <u>roots</u> of *f*.
- In 1-D it is usually possible to trap or <u>bracket</u> the desired roots and hunt them down.
- Typically all root-finding methods proceed by <u>iteration</u>, improving a <u>trial solution</u> until some <u>convergence criterion</u> is satisfied.

Function Pathologies

- Before blindly applying a root-finding algorithm to a problem, it is essential that the form of the equation in question be understood: graph it!
- For smooth functions good algorithms will always converge, provided the initial guess is good enough.
- Pathologies include discontinuities, singularities, multiple or very close roots, or no roots at all!

Numerical Root Finding

- Suppose f(a) and f(b) have opposite sign.
- Then, if *f* is continuous on the interval (*a*,*b*), there must be at least one root between *a* and *b* (this is the Intermediate Value Theorem).
- Such roots are said to be <u>bracketed</u>.

Example Application

- Use root finding to calculate the equilibrium temperature of the ISM.
- The ISM is a very diffuse plasma.
 - Heated by nearby stars and cosmic rays.
 - Cooled by a variety of processes:
 - Bremsstrahlung: collisions between electrons and ions
 - Atom-electron collisions followed by radiative decay
 - Thermal radiation from dust grains

- Equilibrium temperature given when: Rate of Heating *H* = Rate of Cooling *C*
 - Often *H* is not a function of temperature *T*.
 - Usually *C* is a complex, nonlinear function of *T*.

Bracketing and Bisection

- NRiC 9.1 lists some simple bracketing routines.
- Once bracketed, root is easy to find by <u>bisection</u>:
 - Evaluate f at interval midpoint (a + b) / 2.
 - Root must be bracketed by midpoint and whichever a or b gives f of opposite sign.
 - Bracketing interval decreases by 2 each iteration: $\varepsilon_{n+1} = \varepsilon_n / 2.$
 - Hence to achieve error tolerance of ε starting from interval of size ε_0 requires $n = \log_2(\varepsilon_0/\varepsilon)$ steps.

Convergence

- Bisection converges <u>linearly</u> (first power of ε).
- Methods in which

 $\varepsilon_{n+1} = (\text{constant}) \times (\varepsilon_n)^m \qquad m > 1$

are said to converge superlinearly.

• Note error actually decreases exponentially for bisection. It converges "linearly" because successive figures are won linearly with computational effort.

Tolerance

- What is a practical tolerance ε for convergence?
- Cannot be less than round-off error.
- For single-precision (float) accuracy, typically take $\varepsilon = 10^{-6}$ in <u>fractional</u> error.

i.e.
$$\frac{f(x) - f(x_r)}{f(x_r)} \sim 10^{-6}$$

where x = numerical solution, $x_r =$ actual root.

• When $f(x_r) = 0$ this fails, so use $\varepsilon = 10^{-6}$ as <u>absolute</u> error (or perhaps use $\varepsilon(|a| + |b|)/2$). Newton-Raphson Method

- Can one do better than linear convergence? <u>Duh</u>!
- Expand *f*(*x*) in a Taylor series:

 $f(x + \delta) = f(x) + f'(x) \delta + f''(x) \delta^2/2 + \dots$

• For $\delta \ll x$, drop higher order terms, so:

 $f(x + \delta) = 0 \Longrightarrow \delta = -f(x) / f'(x)$

• δ is correction added to current guess of root:

i.e. $x_{i+1} = x_i + \delta$

Newton-Raphson, Cont'd

• Graphically, Newton-Raphson (NR) uses tangent line at x_i to find zero crossing, then uses x at zero crossing as next guess:

• Note: only works near root ($\delta \ll x$)...

Newton-Raphson, Cont'd

• When higher order terms important, NR fails spectacularly. Other pathologies exist too:

Shoots to infinity

Never converges

Newton-Raphson, Cont'd

- Why use NR if it fails so badly?
- Rate of convergence:

 $\varepsilon_{i+1} = \varepsilon_i - f(x_i) / f'(x_i)$

• Taylor expand $f(x_i) \& f'(x_i)$ to get:

 $\varepsilon_{i+1} = -\varepsilon_i^2 f''(x_i) / f'(x_i) \quad \text{[quadratic!]}$

- Note both *f*(*x*) and *f* '(*x*) must be evaluated each iteration, plus both must be continuous near root.
- Best use of NR is to "polish-up" bisection root.

Nonlinear Systems of Equations

Consider the system f(x,y) = 0, g(x,y) = 0. Plot zero contours of f & g:

- No information in *f* about *g*, and vice versa.
 - In general, no good method for finding roots.

Nonlinear Systems, Cont'd

• If you are near root, best bet is NR. e.g. For $\mathbf{F}(\mathbf{x}) = \mathbf{0}$, choose $\mathbf{x}_{i+1} = \mathbf{x}_i + \delta$, where $\mathbf{F}'(\mathbf{x}) \ \delta = -\mathbf{F}(\mathbf{x})$

• This is a matrix equation: $\mathbf{F}'(\mathbf{x})$ is a matrix with elements $\partial F_i / \partial x_i$. The matrix is called the Jacobian.

• Written out:

$$\frac{\partial f}{\partial x}\delta_{x} + \frac{\partial f}{\partial y}\delta_{y} = -f(x, y)$$
$$\frac{\partial g}{\partial x}\delta_{x} + \frac{\partial g}{\partial y}\delta_{y} = -g(x, y)$$

Nonlinear Systems, Cont'd

- Given initial guess, must evaluate matrix elements and RHS, solve system for δ , and compute next iteration \mathbf{x}_{i+1} . Then repeat (must solve 2 × 2 linear system each time).
- Essentially the non-linear system has been linearized to make it easier to work with.
- NriC 9.7 discusses a global convergence strategy that combines multi-D NR with "backtracking" to improve chances of finding solutions.

Example: Interstellar Chemistry

- ISM is multiphase plasma consisting of electrons, ions, atoms, and molecules.
- Originally, the ISM was thought to be too hostile for molecules.
- But in 1968-69, radio observations discovered absorption/emission lines of NH₃, H₂CO, H₂O, ...
- Lots of organic molecules, e.g. CH_3CH_2OH (ethanol).

- In some places, all atoms have been incorporated into molecules.
- For example, molecular clouds: dense, cold clouds of gas composed primarily of molecules. $(T \sim 30 \text{ K}, n \sim 10^6 \text{ cm}^{-3}, M \sim 10^{5-6} M_{\odot}, R \sim 10 - 100 \text{ pc}).$
- How do you predict what abudances of different molecules should be, given *n* and *T*?
- Need to solve a <u>chemical reaction network</u>.

- Consider reaction between two species A and B: $A + B \rightarrow AB$ reaction rate = $n_A n_B R_{AB}$
- Reverse also possible:

 $AB \rightarrow A + B$ reaction rate = $n_{AB}R'_{AB}$

• In equilibrium:

$$(1) \quad n_{\rm A} n_{\rm B} R_{\rm AB} = n_{\rm AB} R'_{\rm AB}$$

(2)
$$n_{A} + n_{AB} = n_{A}^{0}$$
 \ Normalizations: #
(3) $n_{B} + n_{AB} = n_{B}^{0}$ / A & B conserved

- Substitute normalization equations into reaction equations to get quadratic in n_{AB} , easily solved.
- However, many more possible reactions:
 - $-AC + B \leftrightarrow AB + C$ (exchange reaction)
 - $ABC \leftrightarrow AB + C$ (dissociation reaction)
- Wind up with large nonlinear system describing all forward/reverse reactions, involving known reaction rates *R*. Must solve given fixed $n^0 \& T$.

Numerical Derivatives

- For NR and function minimization, often need derivatives of functions. It's <u>always</u> better to use an analytical derivative if it's available.
- If you're stuck, could try:

$$f(x) \approx \frac{f(x+h) - f(x)}{h}$$

• However, this is <u>very</u> susceptible to RE. Better:

$$f(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

• Read NriC 5.7 before trying this!