Nonilinesur Equations

- Often (most of the time??) the relevant system of equations is not linear in the unknowns.
- Then, cannot decompose as $A \mathbf{x}=\mathbf{b}$. Oh well.
- Instead write as:
(1) $f(x)=0 \quad$ function of one variable (1-D)
(2) $\mathbf{f}(\mathbf{x})=\mathbf{0} \quad \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \mathbf{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)(n$-D)
- Not guaranteed to have any real solutions, but generally do for astrophysical problems.
Solutions in 1-D
- Generally, solving multi-D equations is much harder, so we'll start with the 1-D case first...
- By writing $f(x)=0$ we have reduced the problem to solving for the roots of f.
- In $1-\mathrm{D}$ it is usually possible to trap or bracket the desired roots and hunt them down.
- Typically all root-finding methods proceed by iteration, improving a trial solution until some convergence criterion is satisfied.
Function Pethologies
- Before blindly applying a root-finding algorithm to a problem, it is essential that the form of the equation in question be understood: graph it!
- For smooth functions good algorithms will always converge, provided the initial guess is good enough.
- Pathologies include discontinuities, singularities, multiple or very close roots, or no roots at all!
Numericsil Poot Finding
- Suppose $f(a)$ and $f(b)$ have opposite sign.
- Then, if f is continuous on the interval (a, b), there must be at least one root between a and b (this is the Intermediate Value Theorem).
- Such roots are said to be bracketed.

Exemple Applicettion
- Use root finding to calculate the equilibrium temperature of the ISM.
- The ISM is a very diffuse plasma.
- Heated by nearby stars and cosmic rays.
- Cooled by a variety of processes:
- Bremsstrahlung: collisions between electrons and ions
- Atom-electron collisions followed by radiative decay
- Thermal radiation from dust grains
Exsemple, Conit'd
- Equilibrium temperature given when: Rate of Heating $H=$ Rate of Cooling C
- Often H is not a function of temperature T.
- Usually C is a complex, nonlinear function of T.

- To solve, find T such that $H-C(T)=0$.

Bracketing and Bisection

- NRiC 9.1 lists some simple bracketing routines.
- Once bracketed, root is easy to find by bisection:
- Evaluate f at interval midpoint $(a+b) / 2$.
- Root must be bracketed by midpoint and whichever a or b gives f of opposite sign.
- Bracketing interval decreases by 2 each iteration:

$$
\varepsilon_{n+1}=\varepsilon_{n} / 2 .
$$

- Hence to achieve error tolerance of ε starting from interval of size ε_{0} requires $n=\log _{2}\left(\varepsilon_{0} / \varepsilon\right)$ steps.

Convergence

- Bisection converges linearly (first power of ε).
- Methods in which

$$
\varepsilon_{n+1}=(\text { constant }) \times\left(\varepsilon_{n}\right)^{m} \quad m>1
$$

are said to converge superlinearly.

- Note error actually decreases exponentially for bisection. It converges "linearly" because successive figures are won linearly with computational effort.

T'olergnce

- What is a practical tolerance ε for convergence?
- Cannot be less than round-off error.
- For single-precision (float) accuracy, typically take $\varepsilon=10^{-6}$ in fractional error.

$$
\text { i.e. } \frac{f(x)-f(x)}{f(x,)} \sim 10^{-6}
$$

where $x=$ numerical solution, $x_{r}=$ actual root.

- When $f\left(x_{r}\right)=0$ this fails, so use $\varepsilon=10^{-6}$ as absolute error (or perhaps use $\varepsilon(|a|+|b|) / 2)$.

Newton-Paphson M/ethod

- Can one do better than linear convergence? Duh!
- Expand $f(x)$ in a Taylor series:

$$
f(x+\delta)=f(x)+f^{\prime}(x) \delta+f^{\prime \prime}(x) \delta^{2} / 2+\ldots
$$

- For $\delta \ll x$, drop higher order terms, so:

$$
f(x+\delta)=0 \Rightarrow \delta=-f(x) / f^{\prime}(x)
$$

- δ is correction added to current guess of root:

$$
\text { i.e. } x_{i+1}=x_{i}+\delta
$$

Newton-Pelphson, Cont'd

- Graphically, Newton-Raphson (NR) uses tangent line at x_{i} to find zero crossing, then uses x at zero crossing as next guess:

- Note: only works near root $(\delta \ll x)$...
Dewton-Peqphson, Cont'd
- When higher order terms important, NR fails spectacularly. Other pathologies exist too:

Shoots to infinity

Never converges
Newton-Pesphson, Cont'd

- Why use NR if it fails so badly?
- Rate of convergence:

$$
\varepsilon_{i+1}=\varepsilon_{i}-f\left(x_{i}\right) / f^{\prime}\left(x_{i}\right)
$$

- Taylor expand $f\left(x_{i}\right) \& f^{\prime}\left(x_{i}\right)$ to get:

$$
\varepsilon_{i+1}=-\varepsilon_{i}^{2} f^{\prime \prime}\left(x_{i}\right) / f^{\prime}\left(x_{i}\right) \quad \text { [quadratic!] }
$$

- Note both $f(x)$ and $f^{\prime}(x)$ must be evaluated each iteration, plus both must be continuous near root.
- Best use of NR is to "polish-up" bisection root.

Donilinear Systens of Equations

- Consider the system $f(x, y)=0, g(x, y)=0$. Plot zero contours of $f \& g$:

- No information in f about g, and vice versa.
- In general, no good method for finding roots.
Nonilinestr S'ystens, Cont'd
- If you are near root, best bet is NR.
e.g. For $\mathbf{F}(\mathbf{x})=\mathbf{0}$, choose $\mathbf{x}_{i+1}=\mathbf{x}_{i}+\delta$, where

$$
\mathbf{F}^{\prime}(\mathbf{x}) \delta=-\mathbf{F}(\mathbf{x})
$$

- This is a matrix equation: $\mathbf{F}^{\prime}(\mathbf{x})$ is a matrix with elements $\partial F_{i} / \partial x_{j}$. The matrix is called the Jacobian.
- Written out:

$$
\begin{aligned}
& \frac{\partial f}{\partial x} \delta_{x}+\frac{\partial f}{\partial y} \delta_{y}=-f(x, y) \\
& \frac{\partial g}{\partial x} \delta_{x}+\frac{\partial g}{\partial y} \delta_{y}=-g(x, y)
\end{aligned}
$$

Morilinesir S'ystems', Cont'd

- Given initial guess, must evaluate matrix elements and RHS, solve system for δ, and compute next iteration \mathbf{x}_{i+1}. Then repeat (must solve 2×2 linear system each time).
- Essentially the non-linear system has been linearized to make it easier to work with.
- NriC 9.7 discusses a global convergence strategy that combines multi-D NR with "backtracking" to improve chances of finding solutions.
Example: Interstellar Chenistry
- ISM is multiphase plasma consisting of electrons, ions, atoms, and molecules.
- Originally, the ISM was thought to be too hostile for molecules.
- But in 1968-69, radio observations discovered absorption/emission lines of $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{CO}, \mathrm{H}_{2} \mathrm{O}, \ldots$
- Lots of organic molecules, e.g. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (ethanol).
Exsmple, Cont'd
- In some places, all atoms have been incorporated into molecules.
- For example, molecular clouds: dense, cold clouds of gas composed primarily of molecules.
($T \sim 30 \mathrm{~K}, n \sim 10^{6} \mathrm{~cm}^{-3}, M \sim 10^{5-6} M_{\odot}, R \sim 10-100 \mathrm{pc}$).
- How do you predict what abudances of different molecules should be, given n and T ?
- Need to solve a chemical reaction network.

Exemple, Conit'd

- Consider reaction between two species A and B :

$$
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB} \quad \text { reaction rate }=n_{\mathrm{A}} n_{\mathrm{B}} R_{\mathrm{AB}}
$$

- Reverse also possible:

$$
\mathrm{AB} \rightarrow \mathrm{~A}+\mathrm{B} \quad \text { reaction rate }=n_{\mathrm{AB}} R_{\mathrm{AB}}^{\prime}
$$

- In equilibrium:
(1) $n_{\mathrm{A}} n_{\mathrm{B}} R_{\mathrm{AB}}=n_{\mathrm{AB}} R_{\mathrm{AB}}^{\prime}$
(2) $n_{\mathrm{A}}+n_{\mathrm{AB}}=n_{\mathrm{A}}^{0}$
\ Normalizations: \#
(3) $n_{\mathrm{B}}+n_{\mathrm{AB}}=n_{\mathrm{B}}{ }^{0} / \mathrm{A} \& \mathrm{~B}$ conserved
Exsmple, Cont'd
- Substitute normalization equations into reaction equations to get quadratic in n_{AB}, easily solved.
- However, many more possible reactions:
$-\mathrm{AC}+\mathrm{B} \leftrightarrow \mathrm{AB}+\mathrm{C} \quad$ (exchange reaction)
$-\mathrm{ABC} \leftrightarrow \mathrm{AB}+\mathrm{C} \quad$ (dissociation reaction)
- Wind up with large nonlinear system describing all forward/reverse reactions, involving known reaction rates R. Must solve given fixed $n^{0} \& T$.

Numericell Derivetives

- For NR and function minimization, often need derivatives of functions. It's always better to use an analytical derivative if it's available.
- If you're stuck, could try:

$$
f(x) \approx \frac{f(x+h)-f(x)}{h}
$$

- However, this is very susceptible to RE. Better:

$$
f(x) \approx \frac{f(x+h)-f(x-h)}{2 h}
$$

- Read NriC 5.7 before trying this!

