> Numericeil Integration (Ousedrature)

- NRiC Chapter 4.
- Already seen Monte Carlo integration.
- Can cast problem as a differential equation (DE):

$$
I=\int_{a}^{b} f(x) d x
$$

is equivalent to solving for $I \equiv y(b)$ the $\mathrm{DE} d y / d x$ $=f(x)$ with the boundary condition $(\mathrm{BC}) y(a)=0$.

- Will learn about ODE solution methods next class.

Treapezoiden \&s Simpson's Rule

- Have abscissas $x_{i}=x_{0}+i h, i=0,1, \ldots, N+1$.
- A function $f(x)$ has known values $f\left(x_{i}\right)=f_{i}$.
- Want to integrate $f(x)$ between endpoints a \& b.
- Trapezoidal rule (2-point closed formula):

$$
\int_{x_{1}}^{x_{2}} f(x) d x=h\left[\frac{1}{2} f_{1}+\frac{1}{2} f_{2}\right]+O\left(h^{3} f^{(2)}\right)
$$

- Simpson's rule (3-point closed formula):

$$
\int_{x_{1}}^{x_{3}} f(x) d x=h\left[\frac{1}{3} f_{1}+\frac{4}{3} f_{2}+\frac{1}{3} f_{3}\right]+O\left(h^{5} f^{(4)}\right)
$$

Extended Trespezoidel Rule

- If we apply the Trapezoidal rule $N-1$ times and add the results, we get:

$$
\int_{x_{1}}^{x_{x}} f(x) d x=h\left[\frac{1}{2} f_{1}+f_{2}+f_{3}++f_{N-1}+\frac{1}{2} f_{N}\right]+O\left(h^{3} f^{(2)}\right)
$$

- Big advantage is it builds on previous work:
- Coarsest step: average f at endpoints a and b.
- Next refinement: add value at midpoint to average.
- Next: add values at $1 / 4$ and $3 / 4$ points.
- And so on. This is implemented as trapzd() in NRiC.
MIore Sophisticetion
- Usually don't know N in advance, so iterate to a desired accuracy: qtrap ().
- Higher-order method by cleverly adding refinements to cancel error terms: qsimp () .
- Generalization to order $2 k$ (Richardson's deferred approach to the limit): qromb () .
- For improper integrals, generally need open formulae (not evaluated at endpoints).
- For multi- D, use nested 1-D techniques.

