
A Crash Course on UNIXA Crash Course on UNIX

 UNIX is an "operating system".
 Interface between user and data stored on computer.

 A Windows-style interface is not required.
 Many flavors of UNIX (and windows interfaces).

 Solaris, Mandrake, RedHat (fvwm, Gnome, KDE), ...

 Most UNIX users use "shells" (or "xterms").
 UNIX windows systems do provide some Microsoft 

Windows functionality.



The ShellThe Shell

 A shell is a command-line interface to UNIX.
 Also many flavors, e.g. sh, bash, csh, tcsh.

 The shell provides commands and functionality 
beyond the basic UNIX tools.
 E.g., wildcards, shell variables, loop control, etc.

 For this tutorial, examples use tcsh in RedHat 
Linux running Gnome.
 Differences are minor for the most part...



Basic CommandsBasic Commands

 You need these to survive: ls, cd, cp, mkdir, mv.
 Typically these are UNIX (not shell) commands.

 They are actually programs that someone has written.

 Most commands such as these accept (or require) 
"arguments".

 E.g. ls -a [show all files, incl. "dot files"]

 mkdir ASTR688 [create a directory]

 cp myfile backup [copy a file]

 See the handout for a list of more commands.



A Word About DirectoriesA Word About Directories

 Use cd to change directories.
 By default you start in your home directory.

 E.g. /home/dcr

 Handy abbreviations:
 Home directory: ~

 Someone else's home directory: ~user

 Current directory: .

 Parent directory: ..



ShortcutsShortcuts

 To return to your home directory: cd
 To return to the previous directory: cd -
 In tcsh, with filename completion (on by default):

 Press TAB to complete filenames as you type.

 Press Ctrl-D to print a list of filenames matching what 
you have typed so far.

 Completion works with commands and variables too!

 Use ↑, ↓, Ctrl-A, & Ctrl-E to edit previous lines.



Man PagesMan Pages

 To see all possible options to a command, use the 
man command, e.g. man mv.

 WARNING: the man pages are very terse...
 Not for the novice; get a book instead, or go surfing.

 You can search the man pages by keyword with 
the -k option.
 E.g. man -k rename

 Sometimes a command provides its own help.



WildcardsWildcards

 Wildcards provide handy filename substitution.
 E.g. ls *.c   [list all files with extension ".c"]

 In tcsh, square brackets substitute for a range.
 E.g. cp obs0[0-9].fits tmp   [copy first 10 FITS files]

 Curly brackets can be used to repeat patterns.
 E.g. a{b,c,d}e is shorthand for abe ace ade

 Use \ or single quotes (') to disable substitution.
 E.g. cd Data\[Oct01\] or cd 'Data[Oct01]'



Stream RedirectionStream Redirection

 Normally commands expect to receive input from 
the keyboard and/or send output to the screen.

 Special redirection symbols can override this.
 E.g. ls > files.txt [send listing to file]

 mail dcr < hwk [mail file to user dcr]

 ls -l | more [pause listing by screenfuls]

 There are many other examples: see handout.
 WARNING: the syntax is very shell dependent!



Shell Variables & AliasesShell Variables & Aliases

 You can store information in a shell variable.
 E.g. set work = /home/dcr/Work

 To access the info, prepend a dollar sign ($).
 E.g. cd $work

 Shell variables are local to the shell; environment 
variables are inherited by new shells and can even 
be accessed internally by programs.
 E.g. setenv WORK /home/dcr/Work



Shell Variables & Aliases, Cont'dShell Variables & Aliases, Cont'd

 There are certain special variables.
 E.g. PATH contains a list of directories to search for 

commands

 Aliases allow you to define new commands.
 E.g. alias rm rm -i   [make rm ask for confirmation]

 Variables and aliases that you use all the time can 
be defined in your "startup" file.
 E.g. in tcsh, ~/.tcshrc is your startup script



Command SubstitutionCommand Substitution

 In tcsh, you can use the result of a command as 
part of a command.
 E.g. setenv OS `uname`

 Anything inside backward single quotes is first 
evaluated in its own shell, and the result is 
returned as a string of one or more words.

 This is very handy in scripts and in conjunction 
with tools like sed and awk.



A Quick Word on EditorsA Quick Word on Editors

 There are many text editors to choose from.
 E.g. vi, emacs, pico, etc.

 To create scripts or programs, you will need to 
learn how to use an editor!
 Also essential if you want to use formatting tools 

such as LaTeX, etc.

 Windows systems often have good GUI editors.
 Note you can use cat or more to show file data.



sedsed

 The "stream editor" (sed) is a useful tool for 
changing the contents of a file (or stream).
 E.g. sed s/apples/oranges/ myfile.txt will change the 

first occurrence of "apples" on each line of myfile.txt 
into "oranges".  To change every occurrence, do the 
following: sed s/apples/oranges/g myfile.txt.

 sed is great in scripts, but it can also be used from 
the command line.  E.g., in conjunction with the 
foreach command, it's a handy way to rename lots 
of files, like all *.JPEG files to *.jpg (EFTS).



awkawk

 awk is a powerful "pattern scanning and 
processing" language.

 Use it to print a column of a file:
 E.g. awk '{print $2}' myfile.txt   [print 2nd column]

 Use it to do math:
 E.g. awk '{print $1+$2}' myfile.txt   [add columns]

 Use it as a calculator:
 E.g. echo '' | awk '{print sqrt(2)}'



awk, cont'dawk, cont'd

 You can write entire programs in awk:
 E.g. awk '/error/{print $0; n += 1} END {print n}' 

myfile.txt    [counts and displays lines containing 
"error" in file]

 Like tcsh itself, awk syntax is reminscent of the 
programing language C.

 awk, sed, wildcards, shell variables, stream 
redirection, and command substitution enable the 
creation of very sophisticated tcsh scripts...



ScriptsScripts

 A script is a sequence of shell commands, usually 
stored in a file and either sourced or executed like 
a program.  Here's a simple example:

 foreach file (*)
 if (-d $file) then
 echo $file is a directory
 endif
 end
 To aid with scripting, tcsh has a number of built-

in commands, such as foreach, if, while, etc.



Scripts, cont'dScripts, cont'd

 A special variable called argv is defined inside a 
script (shell).  It contains any arguments passed to 
the script (shell).
 E.g. echo $argv [show all arguments]

 echo $argv[2] [show the 2nd argument]

 echo $#argv [show the number of args]

 You can do integer math within a script using @.
 E.g. set x = 0; @ x = $x + 1; echo $x   [good for loops!]



What We Didn't CoverWhat We Didn't Cover

 File permissions (chmod)
 Managing jobs (ps, nice, kill)
 Printing (lpr)
 Remote connections (ssh, scp)
 System administration (not for the faint of heart)
 And lots of other stuff!

 See the handout for web tutorials, etc.


