Data Representation and Introduction to Visualization

Massimo Ricotti

ricotti@astro.umd.edu

University of Maryland

VISUALIZATION

- Visualization is useful for:
 - 1. Data entry (initial conditions).
 - 2. Code debugging and performance analysis.
 - 3. Interpretation and display of results.
- Our focus will be #3. The computational astrophysicist can either:
 - 1. Develop new visualization software tailored to problem under study.
 - 2. Use an existing software package.

Plotting 1-D data

- Function of one variable only: f(x) vs. x.
- Examples: sm, gnuplot, xgobi, IDL, etc.
- Minimum requirements:
 - Read data from file.
 - Perform arithmetic manipulation of data.
 - Multiple data sets on plot.
 - Multiple plots on page.
 - Add text to plots.

Plotting 2-D data

- **•** Function of 2 variables, i.e. f(x, y).
- If f is a scalar quantity, can:
 - 1. Make image.
 - Represent each (x, y) data point by one or more pixels on screen.
 - Use integer value to represent data value at (x, y) point (8 bit: 0–255; 24-bit: 0–16.8 million).
 - 2. Make contour plot.
 - Contours are isosurfaces of data.
 - 3. Make 3-D surface plot.
 - Use (x, y) as 2 coordinates, f as third coordinate, plot surface.

- If f is a vector quantity, i.e. f(x, y), can:
 - 1. Plot vectors directly (as arrows).
 - Can be hard to see.
 - 2. Plot streamlines.
 - Contours of Φ , where $f = \nabla \Phi$.
- 2-D plotting packages include sm, gnuplot, xgobi, IDL, ximage, NCAR graphics, etc.

Plotting 3-D data

- **•** Function of 3 variables, i.e. f(x, y, z).
- \checkmark If f is a scalar quantity, can:
 - 1. Plot 2-D slices.
 - E.g. faces of cube.
 - 2. Plot isosurfaces.
 - These are now 3-D surfaces. Can use wireframe of polygons. Can shade with second variable g(x, y, z).
 - 3. Plot volumetric rendering.
 - Solve transfer equation ("ray tracing") using emissivity proportional to data value.

- Standard algorithms exist for 3-D rendering, including shadowing, hidden surface removal, etc. Often implemented in hardware. Also have "dynamic/interactive" visualization: rotation, etc.
- If f is a vector quantity, i.e. f(x, y, z), can:
 - 1. Plot 3-D vectors on 2-D slice.
 - 2. Plot streamlines in 3-D.
- 3-D plotting packages include tipsy, xgobi, IDL, NCAR graphics, xdataslice, etc.

Animation

- If any one of the coordinates of data in a plot is time, it makes sense to render images as a time sequence, e.g. make animation.
- The eye is very sensitive to motion, can discover much detail using animations.
- Animation formats include MPEG, FLI, QT, AVI, GIF, plus many custom formats.
- Animation players include mpeg_play, xanim, quicktime, gifview, etc.
 - Often built into web browsers.

DATA REPRESENTATION

- Computers store data as different variable types, e.g. integer, floating point, complex, etc.
- Different machines have different wordlengths, e.g. 4-byte ints on a 32-bit machine (Pentium), 8-byte ints on a 64-bit machine (G5).
- This makes (binary) data non-portable.

Integers

- All data types represented by 0's and 1's.
- An integer value:

$$j = \sum_{i=1}^{N} s_i \times 2^{N-i}$$

- N = # of bits in word.
- s_i = value of bit *i* in binary string *s*.
- **•** E.g., $0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 = 2^2 + 2^1 = 6$ for 8-bit word.
- Use "two's complement" method for sign (see below).
- Largest value that can be represented is $2^N 1$.
- For 32-bit word this is 4,294,967,295.

- Arithmetic with integers is exact, except:
 - when division results in remainder, or
 - result exceeds largest representable integer. E.g. $2 \times 10^9 + 3 \times 10^9$ = overflow error.
- Note multiplication (division) by 2's can be achieved by left-shift (right-shift), which is very fast (in C, use the << (>>) operator).

Two's complement

- Exploits finite size of data representations (cyclic groups) and properties of binary arithmetic.
- To get negative of binary integer, invert all bits and add 1 to the result.
 - E.g., 1 = 0 0 0 0 0 0 0 1 in 8-bit.

invert bits: 11111110

- add 1: <u>0000001</u>
- result: 1 1 1 1 1 1 1 = -1
- In 8 bits, signed char ranges from -128 to +127.

Negative powers of 2

Binary notation can be extended to cover negative powers of 2, e.g. "110.101" is:

 $1 \times 2^2 + 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 6.625.$

- Can represent real numbers by specifying some location in the word as the "binary point" ("fixed-point representation").
- In practice, use some bits for an exponent ("floating-point representation").

Floats

For most machines these days, real numbers are represented by floating-point format:

$$x = s \times M \times B^{e-E}$$

- s = sign B = base (usually 2, sometimes 16)
- M = mantissa e = exponent
- E = bias, usually 127.
- In past, manufacturers used different number of bits for each of M and e, resulting in non-portable code.

Currently, most manufacturers adopt IEEE standard:

 \bullet s = first bit.

- Next 8 bits are e. (e = 255 reserved for inf & NaN.)
- Last 23 bits are M, expressed as a binary fraction, either 1.F, or, if e = 0, 0.F (in which case E = 126), where F is in base 2.

E.g., 0 1000001 101000000000000000000 = $(+1) \left[2^{(129-127)}\right] (1+0.5+0.125) = 6.5.$

- Largest single-precision float $f_{\max} = 2^{127} \times (1 + 1/2 + 1/4 + \dots + 1/2^{23}) \approx 3.4028235 \times 10^{38}$ (just under 2^{128}).
- Smallest (and least precise!) $f_{\rm min} = 2^{-149} \approx 10^{-45}$.

Round-off error

- Not all values along real axis can be represented.
- There are 10^{38} integers between f_{\min} and f_{\max} , but only $2^{32} \approx 10^9$ bit patterns.
- Solution Values $< |10^{-45}|$ result in "underflow" error.
- If value cannot be represented, next nearest value is produced. Difference between desired and actual value is called "round-off error" (RE).
- Smallest value e_m for which $1 + e_m > 1$ is called "machine accuracy," typically $2^{-23} \sim 10^{-7}$ for 32 bits.
- Double precision greatly reduces e_m ($\sim 10^{-16}$). (In this case the 64 bits are divided into 1 sign bit, 11 exponent bits, and 52 mantissa bits; the bias is 1023.)

- RE accumulates in a calculation:
 - Random walk: total error $\sqrt{N}e_m$ after N operations.
 - But algorithms rarely random, giving linear error Ne_m .
- Subtraction of two very nearly equal numbers can give rise to large RE.
 - E.g., solution of quadratic equation...

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

...can go badly wrong whenever $ac \ll b^2$ (Cf. PS#2).

RE cannot be avoided—it is a consequence of using a finite number of bits to represent real values.

Truncation error

- In practice, most numerical algorithms approximate desired solution with a finite number of artithmetic operations, e.g.,
 - evaluating integral by quadrature;
 - summing series using finite number of terms.
- Difference between true solution and numerical approximation to solution is called "truncation error" (TE).
- TE exists even on "perfect" machine with no RE.
- TE is under programmer's control; much effort goes into reducing it.
- Usually RE and TE do not interact.
- Sometimes TE can amplify RE until it swamps calculation. The solution is then called <u>unstable</u>.

E.g., integer powers of Golden Mean (Cf. PS#2).