Data Representation and Introduction to Visualization

Massimo Ricotti
ricotti@astro.umd.edu

University of Maryland

VISUALIZATION

- Visualization is useful for:

1. Data entry (initial conditions).
2. Code debugging and performance analysis.
3. Interpretation and display of results.

- Our focus will be \#3. The computational astrophysicist can either:

1. Develop new visualization software tailored to problem under study.
2. Use an existing software package.

Plotting 1-D data

- Function of one variable only: $f(x)$ vs. x.
- Examples: sm, gnuplot, xgobi, IDL, etc.
- Minimum requirements:
- Read data from file.
- Perform arithmetic manipulation of data.
- Multiple data sets on plot.
- Multiple plots on page.
- Add text to plots.

Plotting 2-D data

- Function of 2 variables, i.e. $f(x, y)$.
- If f is a scalar quantity, can:

1. Make image.

- Represent each (x, y) data point by one or more pixels on screen.
- Use integer value to represent data value at (x, y) point (8 bit: 0-255; 24-bit: 0-16.8 million).

2. Make contour plot.

- Contours are isosurfaces of data.

3. Make 3-D surface plot.

- Use (x, y) as 2 coordinates, f as third coordinate, plot surface.
- If f is a vector quantity, i.e. $\mathbf{f}(x, y)$, can:

1. Plot vectors directly (as arrows).

- Can be hard to see.

2. Plot streamlines.

- Contours of Φ, where $\mathrm{f}=\nabla \Phi$.
- 2-D plotting packages include sm, gnuplot, xgobi, IDL, ximage, NCAR graphics, etc.

Plotting 3-D data

- Function of 3 variables, i.e. $f(x, y, z)$.
- If f is a scalar quantity, can:

1. Plot 2-D slices.

- E.g. faces of cube.

2. Plot isosurfaces.

- These are now 3-D surfaces. Can use wireframe of polygons. Can shade with second variable $g(x, y, z)$.

3. Plot volumetric rendering.

- Solve transfer equation ("ray tracing") using emissivity proportional to data value.
- Standard algorithms exist for 3-D rendering, including shadowing, hidden surface removal, etc. Often implemented in hardware. Also have "dynamic/interactive" visualization: rotation, etc.
- If f is a vector quantity, i.e. $\mathbf{f}(x, y, z)$, can:

1. Plot $3-D$ vectors on $2-D$ slice.
2. Plot streamlines in $3-D$.

- 3-D plotting packages include tipsy, xgobi, IDL, NCAR graphics, xdataslice, etc.

Animation

- If any one of the coordinates of data in a plot is time, it makes sense to render images as a time sequence, e.g. make animation.
- The eye is very sensitive to motion, can discover much detail using animations.
- Animation formats include MPEG, FLI, QT, AVI, GIF, plus many custom formats.
- Animation players include mpeg_play, xanim, quicktime, gifview, etc.
- Often built into web browsers.

DATA REPRESENTATION

- Computers store data as different variable types, e.g. integer, floating point, complex, etc.
- Different machines have different wordlengths, e.g. 4-byte ints on a 32-bit machine (Pentium), 8-byte ints on a 64-bit machine (G5).
- This makes (binary) data non-portable.

Integers

- All data types represented by 0's and 1's.
- An integer value:

$$
j=\sum_{i=1}^{N} s_{i} \times 2^{N-i}
$$

- $N=\#$ of bits in word.
- $s_{i}=$ value of bit i in binary string s.
- E.g., $00000110=2^{2}+2^{1}=6$ for 8 -bit word.
- Use "two's complement" method for sign (see below).
- Largest value that can be represented is $2^{N}-1$.
- For 32-bit word this is $4,294,967,295$.
- Arithmetic with integers is exact, except:
- when division results in remainder, or
- result exceeds largest representable integer.
E.g. $2 \times 10^{9}+3 \times 10^{9}=$ overflow error.
- Note multiplication (division) by 2's can be achieved by left-shift (right-shift), which is very fast (in C, use the \ll (\gg) operator).

Two's complement

- Exploits finite size of data representations (cyclic groups) and properties of binary arithmetic.
- To get negative of binary integer, invert all bits and add 1 to the result.

$$
\begin{aligned}
& \text { E.g., } 1=00000001 \text { in } 8 \text {-bit. } \\
& \begin{array}{l}
\text { invert bits: } \\
\text { add 1: } \\
\text { result: }
\end{array} \frac{11111110000001}{11111111=-1}
\end{aligned}
$$

- In 8 bits, signed char ranges from -128 to +127 .

Negative powers of 2

- Binary notation can be extended to cover negative powers of 2, e.g. " 110.101 " is:

$$
1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{-1}+1 \times 2^{-3}=6.625 .
$$

- Can represent real numbers by specifying some location in the word as the "binary point" ("fixed-point representation").
- In practice, use some bits for an exponent ("floating-point representation").

Floats

- For most machines these days, real numbers are represented by floating-point format:

$$
\begin{array}{rlrl}
& & x=s \times M \times B^{e-E} \\
s & =\text { sign } & B=\text { base (usually 2, sometimes 16) } \\
M & =\text { mantissa } & e & =\text { exponent } \\
E & =\text { bias, usually } 127 . &
\end{array}
$$

- In past, manufacturers used different number of bits for each of M and e, resulting in non-portable code.
- Currently, most manufacturers adopt IEEE standard:
- $s=$ first bit.
- Next 8 bits are e. ($e=255$ reserved for inf \& NaN.)
- Last 23 bits are M, expressed as a binary fraction, either 1.F, or, if $e=0,0 . \mathrm{F}$ (in which case $E=126$), where F is in base 2 .
E.g., $01000000110100000000000000000000=$ $(+1)\left[2^{(129-127)}\right](1+0.5+0.125)=6.5$.
- Largest single-precision float
$f_{\max }=2^{127} \times\left(1+1 / 2+1 / 4+\cdots+1 / 2^{23}\right) \approx 3.4028235 \times 10^{38}$ (just under 2^{128}).
- Smallest (and least precise!) $f_{\min }=2^{-149} \approx 10^{-45}$.

Round-off error

- Not all values along real axis can be represented.
- There are 10^{38} integers between $f_{\text {min }}$ and $f_{\text {max }}$, but only $2^{32} \approx 10^{9}$ bit patterns.
- Values $<\left|10^{-45}\right|$ result in "underflow" error.
- If value cannot be represented, next nearest value is produced. Difference between desired and actual value is called "round-off error" (RE).
- Smallest value e_{m} for which $1+e_{m}>1$ is called "machine accuracy," typically $2^{-23} \sim 10^{-7}$ for 32 bits.
- Double precision greatly reduces $e_{m}\left(\sim 10^{-16}\right)$. (In this case the 64 bits are divided into 1 sign bit, 11 exponent bits, and 52 mantissa bits; the bias is 1023.)
- RE accumulates in a calculation:
- Random walk: total error $\sqrt{N} e_{m}$ after N operations.
- But algorithms rarely random, giving linear error $N e_{m}$.
- Subtraction of two very nearly equal numbers can give rise to large RE.
E.g., solution of quadratic equation...

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

...can go badly wrong whenever $a c \ll b^{2}$ (Cf. PS\#2).

- RE cannot be avoided-it is a consequence of using a finite number of bits to represent real values.

Truncation error

- In practice, most numerical algorithms approximate desired solution with a finite number of artithmetic operations, e.g.,
- evaluating integral by quadrature;
- summing series using finite number of terms.
- Difference between true solution and numerical approximation to solution is called "truncation error" (TE).
- TE exists even on "perfect" machine with no RE.
- TE is under programmer's control; much effort goes into reducing it.
- Usually RE and TE do not interact.
- Sometimes TE can amplify RE until it swamps calculation. The solution is then called unstable.
E.g., integer powers of Golden Mean (Cf. PS\#2).

