Numerical Linear Algebra, Part I

Massimo Ricotti

ricotti@astro.umd.edu

University of Maryland

- Probably the simplest kind of problem.
- Occurs in many contexts, often as part of larger problem.
- Symbolic manipulation packages can do linear algebra analytically (e.g., Mathematica, Maple, etc.).
- Numerical methods needed when:
 - Number of equations very large.
 - One or more coefficients numerical.

Linear Systems

Write linear system as:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots = \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

- This system has n unknowns and m equations.
- If n = m, system is closed.
- If $m \le n$ and any equation is a linear combination of any others, equations are degenerate and system is singular.

Numerical Constraints

- Numerical methods have their own problems when:
 - 1. Equations are degenerate "within round-off error."
 - 2. Accumulated round-off errors swamp solution (magnitudes of *a*'s and *x*'s vary wildly).
- **For** n, m < 50, single precision usually OK (but why bother?).
- **For** n, m < 200, double precision usually OK.
- For 200 < n, m < few thousand, solutions possible only for sparse systems (lots of *a*'s zero).

Matrix Form

Write system in matrix form:

$$\mathbf{A}\mathbf{x} = \mathbf{b},$$

where:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

٠

Matrix Data Representation

Recall, C stores data in row-major form:

 $a_{11}, a_{12}, \ldots, a_{1n}; a_{21}, a_{22}, \ldots, a_{2n}; \ldots; a_{m1}, a_{m2}, \ldots, a_{mn}.$

If using "pointer to array of pointers to rows" scheme in C, can reference entire rows by first index, e.g., 3rd row = a[2].

(!) Recall in C array indices start at zero!

FORTRAN stores data in column-major form:

 $a_{11}, a_{21}, \ldots, a_{m1}; a_{12}, a_{22}, \ldots, a_{m2}; \ldots; a_{1n}, a_{2n}, \ldots, a_{mn}.$

Note on Numerical Recipes in C

- The canned routines in NRiC make use of special functions defined in nrutil.c (header nrutil.h).
 - In particular, arrays and matrices are allocated dynamically with indices starting at 1, not 0.
 - If you want to interface with the NRiC routines, but prefer the normal C array index convention, pass arrays by subtracting 1 from the pointer address (i.e., pass p 1 instead of p) and pass matrices by using the functions convert_matrix() and free_convert_matrix() in nrutil.c (see NRiC §1.2 for more information).

Tasks of Linear Algebra

- We will consider the following tasks:
 - 1. Solve Ax = b, given A and b.
 - 2. Solve $Ax_i = b_i$ for multiple b_i 's.
 - 3. Calculate A^{-1} , where $A^{-1}A = 1$, the identity matrix.
 - 4. Calculate the determinant of $\mathbf{A},\,\det(\mathbf{A}).$
- Large packages of routines available for these tasks, e.g., LINPACK, LAPACK, GSL (public domain), IMSL, NAG libraries (commercial).
- We will look at methods assuming n = m.

The Augmented Matrix

• The equation Ax = b can be generalized to a form better suited to efficient manipulation:

$$(\mathbf{A}|\mathbf{b}) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & b_n \end{pmatrix}$$

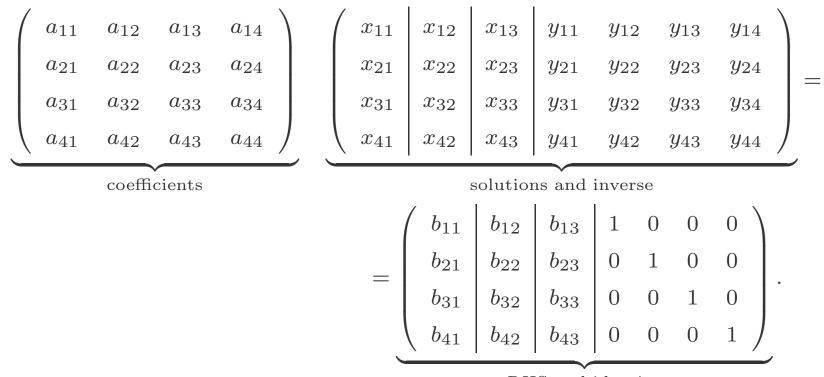
- The system can be solved by performing operations on the augmented matrix.
- The x_i 's are placeholders that can be omitted until the end of the computation.

Elementary row operations

- The following row operations can be performed on an augmented matrix without changing the solution of the underlying system of equations:
 - 1. Interchange two rows.
 - 2. Multiply a row by a nonzero real number.
 - 3. Add a multiple of one row to another row.
- The idea is to apply these operations in sequence until the system of equations is trivially solved.

The generalized matrix equation

Consider the generalized linear matrix equation:



RHS and identity

Its solution simultaneously solves the linear sets:

 $Ax_1 = b_1$, $Ax_2 = b_2$, $Ax_3 = b_3$, and AY = 1,

where the x_i 's and b_i 's are column vectors.

Gauss-Jordan Elimination

- GJE uses one or more elementary row operations to reduce matrix A to the identity matrix.
- The RHS of the generalized equation becomes the solution set and Y becomes A⁻¹.
- Disadvantages:
 - 1. Requires all \mathbf{b}_i 's to be stored and manipulated at same time \Rightarrow memory hog.
 - 2. Don't always need A^{-1} .
- Other methods more efficient, but good backup.

Procedure

Start with simple augmented matrix as example:

$$\left(\begin{array}{cccccccccc}
a_{11} & a_{12} & a_{13} & b_1 \\
a_{21} & a_{22} & a_{23} & b_2 \\
a_{31} & a_{32} & a_{33} & b_3
\end{array}\right)$$

- Divide first row $(a_1|b_1)$ by first element a_{11} .
- Subtract $a_{i1}(\mathbf{a}_1|\mathbf{b}_1)'$ from <u>all</u> other rows:

$$\begin{pmatrix} 1 & a_{12}/a_{11} & a_{13}/a_{11} & b_1/a_{11} \\ 0 & a_{22} - a_{21}(a_{12}/a_{11}) & a_{23} - a_{21}(a_{13}/a_{11}) & b_2 - a_{21}(b_1/a_{11}) \\ 0 & a_{32} - a_{31}(a_{12}/a_{11}) & a_{33} - a_{31}(a_{13}/a_{11}) & b_3 - a_{31}(b_1/a_{11}) \end{pmatrix}$$

Continue process for 2^{nd} row, etc.

$$\left(\begin{array}{cccc|c} 1 & a_{12} & a_{13} & b_1 \\ 0 & a_{22} & a_{23} & b_2 \\ 0 & a_{32} & a_{33} & b_3 \end{array}\right)$$

- Repeat process for 2nd row:
- \checkmark divide 2nd row ($\mathbf{a}_2 | \mathbf{b}_2$) by a_{22} .
- Subtract $a_{i2}(\mathbf{a}_2|\mathbf{b}_2)'$ from <u>all</u> other rows:

$$\begin{pmatrix} 1 & 0 & a_{13} - a_{12}(a_{23}/a_{22}) \\ 0 & 1 & a_{23}/a_{22} \\ 0 & 0 & a_{33} - a_{32}(a_{23}/a_{22}) \end{pmatrix} \begin{pmatrix} b_1 - a_{12}(b_2/a_{22}) \\ b_2/a_{22} \\ b_3 - a_{32}(b_2/a_{22}) \end{pmatrix}$$

Repeat process for 3rd row, etc.

- Problem occurs if leading diagonal element ever becomes <u>zero</u>.
- Also, procedure is numerically unstable (in presence of RE)!
- Solution: use "pivoting"—rearrange remaining rows (partial pivoting) or rows and columns (full pivoting—requires permutation!) so largest coefficient is in diagonal position.
- Best to "normalize" equations (implicit pivoting) so largest coefficient in each row is exactly unity before starting the procedure.

Gaussian elimination with backsubstitution

If, during GJE, only subtract rows <u>below</u> pivot, will be left with a triangular matrix ("Gaussian elimination"):

$$\begin{pmatrix} a'_{11} & a'_{12} & a'_{13} \\ 0 & a'_{22} & a'_{23} \\ 0 & 0 & a'_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b'_1 \\ b'_2 \\ b'_3 \end{pmatrix}$$

- Solution for x_3 is then trivial: $x_3 = b'_3/a'_{33}$.
- Substitute into 2^{nd} row to get x_2 .
- Substitute x_3 and x_2 into 1st row to get x_1 .
- Faster than GJE, but still memory hog.