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Nonlinear Equations
Often (most of the time??) the relevant system of equations is
nonlinear in the unknowns.

Then, cannot decompose as Ax = b. Oh well.

Instead write as:
1. f(x) = 0 (for functions of one variable, i.e., 1-D);
2. f(x) = 0 (for x = (x1, x2, ..., xn), f = (f1, f2, ..., fn), i.e., n-D).

Not guaranteed to have any real solutions, but generally do for
astrophysical problems.
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Solutions in 1-D
Generally, solving multi-D equations is much
harder, so we’ll start with the 1-D case first...
By writing f(x) = 0 we have reduced the
problem to solving for the roots of f .
In 1-D it is usually possible to trap or bracket
the desired roots and hunt them down.
Typically all root-finding methods proceed by
iteration, improving a trial solution until some
convergence criterion is satisfied.
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Function Pathologies
Before blindly applying a root-finding
algorithm to a problem, it is essential that the
form of the equation in question be
understood: graph it!
For smooth functions, good algorithms will
always converge, provided the initial guess is
good enough.
Pathologies include discontinuities,
singularities, multiple or very close roots, or
no roots at all!
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Numerical Root Finding
Suppose f(a) and f(b) have opposite sign.

Then, if f is continuous on the interval (a, b), there must be at
least one root between a and b (this is the Intermediate Value
Theorem).

Such roots are said to be bracketed.

Bracketed root Many roots No roots
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Example Application
Use root finding to calculate the equilibrium
temperature of the ISM.
The ISM is a very diffuse plasma.
Heated by nearby stars and cosmic rays.
Cooled by a variety of processes:
• Bremsstrahlung: collisions between
electrons and ions.

• Atom-electron collisions followed by
radiative decay.

• Thermal radiation from dust grains.
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Simulations of Multi-phase ISM
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Example Application (cont..)
Equilibrium temperature given when rate of heating H = rate of
cooling C.

Often H is not a function of temperature T .
Usually C is a complex, nonlinear function of T .

T

H or C
C

H

Solution
To solve, find T such that H − C(T ) = 0.
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Bracketing and Bisection
NRiC §9.1 lists some simple bracketing routines that search for
sign changes of f :

zbrac(): expand search range geometrically;
zbrak(): look for roots in subintervals.

Once bracketed, root is easy to find by bisection:
Evaluate f at interval midpoint (a+ b)/2.
Root must be bracketed by midpoint and whichever a or b
gives f of opposite sign.
Bracketing interval decreases by 2 each iteration:

εn+1 = εn/2.

Hence to achieve error tolerance of ε starting from interval of
size ε0 (ε ≤ ε0) requires n = log2(ε0/ε) step(s).
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Convergence
Bisection converges linearly (first power of ε).
Methods for which

εn+1 = constant× (εn)
m, m > 1,

are said to converge superlinearly.
Note error actually decreases exponentially
for bisection. It converges “linearly” because
successive significant figures are won linearly
with computational effort (i.e.,
1 → 0.5 → 0.25 → 0.125 → · · · ).
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Tolerance
What is a practical tolerance ε for
convergence?
Best you can do is machine precision (em,
about 10−7 in single precision); more
practically, absolute convergence within
em(|a|+ |b|)/2 is used.
Sometimes consider fractional accuracy,

|xi+1 − xi|
|xi|

∼ em,

but this can fail for xi near zero.
Root Finding in 1-D – p. 11/19



Newton-Raphson Method
Can we do better than linear convergence? Duh!

Expand f(x) in a Taylor series:

f(x+ δ) = f(x) + f ′(x)δ +
f ′′(x)

2
δ2 + ...

For small |δ|, drop higher-order terms, so:

f(x+ δ) = 0 implies δ = − f(x)

f ′(x)
.

δ is correction added to current guess of root, i.e.,

xi+1 = xi + δ.
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Graphically, Newton-Raphson (NR) uses tangent line at xi to find
zero crossing, then uses x at zero crossing as next guess:

xi+2
x i+1 xi
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Note: only works near root...
When higher order terms important, NR fails spectacularly.
Other pathologies exist too:

1

23

2

1

Shoots to infinity Never converges
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Why use NR if it fails so badly?

Can show that
εi+1 = −ε2i

f ′′(x)

2f ′(x)
,

i.e., quadratic convergence!

Note both f(x) and f ′(x) must be evaluated each iteration, plus
both must be continuous near root.

Popular use of NR is to “polish up” bisection root.
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Quadratic convergence
Suppose α is the root. According to Taylor’s theorem,

0 = f(α) = f(xn) + f ′(xn)(α− xn) +
f ′′(ξn)

2
(α− xn)

2

where ξn is between xn and α. Since xn+1 ≡ xn − f(xn)/f ′(xn),

α− xn+1 = − f ′′(ξn)

2f ′(xn)
(α− xn)

2

that is
εi+1 = − f ′′(ξn)

2f ′(xn)
ε2i ,

or
|εi+1| ≤ Mε2i ,

whereM is a constant
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Square root of a number (from Wiki)
Consider the problem of finding the square root of a number. There are
many methods of computing square roots, and Newton’s method is
one. For example, if one wishes to find the square root of 612, this is
equivalent to finding the solution to

x2 = 612

The function to use in Newton’s method is then,

f(x) = x2 − 612

with derivative,
f ′(x) = 2x
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With an initial guess of 10, the sequence given by Newton’s method is

x1 = x0 − f(x0)
f ′(x0)

= 10− 102−612
2×10 = 35.6

x2 = x1 − f(x1)
f ′(x1)

= 35.6− 35.62−612
2×35.6 = 26.3955

x3 =
... =

... = 24.790635492455

x3 =
... =

... = 24.738688290475

x5 =
... =

... = 24.738633757367

Where the correct digits are underlined. With only a few iterations one
can obtain a solution accurate to many decimal places.
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Newton’s method and fractals
The Newton’s method works also for complex numbers

For instance, z3 = 1 has 1 real and two complex roots
[exp(±2πi/3)].
The method does not always converge to the real root. The
colors in the image below show the root reached (similarly one
can show the number of iterations to convergence) for starting
points in the complex plane .... this is a fractal!

Newton’s formula for the set above: zj+1 = zj −
z3
j−1

2z2
j

Root Finding in 1-D – p. 19/19


