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NRIC §15.
Model depends on adjustable parameters.
Can be used for “constrained interpolation.”

Basic approach:
1. Choose figure-of-merit function (e.g., x?).

2. Adjust best-fit parameters: minimize merit function.

3. Compute goodness-of-fit.
4. Compute error estimates for parameters.
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Least Squares Fitting

® Suppose we want to fit V data points (x;, y;) with a function that
depends on M parameters a; and that each data point has a
standard deviation ;. The maximum likelihood estimate of the
model parameters is obtained by minimizing:

s Z [y y(ws; ar.-anr)

® Assuming the errors are normally distributed, a “good fit” has
x?> ~v,wherev =N — M.

2

o NOTE: Assumption of normal errors means glitches or outliers
in data may overbias the fit—see NRIC §15.7 for discussion of
more robust methods.

» Grossly overestimated (underestimated) o;’s may give
incorrect impression that fit is very good (very bad).
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® If uncertain about reliability of goodness-of-fit measure, could do
Monte Carlo simulations of fits to synthetic data.

® Question: what to do if o;’s not known? Answer: choose an
arbitrary constant o, perform the fit, then estimate o from the fit:
02 = SN [y: — y(x;)]?/v (note the denominator is what x2 should
approximately be equal to, if the fit is good).
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Fitting Data to a Straight Line
(Linear Regression)

® For this case the model is simply:

y(z) = y(r;a,b) = a + b,

and

al Y, —a — bx °
*(a,b) = ).
X’la,b) => -

=1
® Derive formula for best-fit parameters by setting

Ox?/0a = 0 = 0x*/0b. See NRIC §15.2 for the derivation (note:
sm uses the same formulae for its 1sq routine).
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® Derive uncertainties in ¢ and b from propagation of errors:

where f = a(x;,y;,04),b(x;,yi,0;) in this case (the x;’s have no
uncertainties).

® Want probability that x? is bad by chance
Q = gammq((N —2)/2,x*/2) > 1072 (here (N —2)/2 = v/2).
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General Linear Least Squares

® Can generalize to any combination that is linear in a;’s:
M
y(z) = Z a;j X (),
j=1

e.g., y(x) = a1+ ayx + a3x2 + ...+ a,Ma:M_l, or sines and cosines.

® Define N x M design matrix A;; = X;(x;)/o;. Note N > M for
the fit to make sense.

® Also define vector b of length N where b; = y; /o;, and vector a of
length M where a; = aq,...,a;.

®» Then we wish to find a that minimizes:
x> = |Aa — b|°.

# This is what SVD solves!
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Recall for SVD we had A = UWV,

Rewriting the SVD solution we get:

where U, (length ) and V; (length M) denote columns of U
and V, respectively.
As before, if w; is small (or zero), can set 1/w; = 0.

» Useful because least-squares problems are generally both
overdetermined (N > M) and underdetermined (ambiguous
combinations of parameters exist)!

Can also compute variances of estimated parameters:
2 _ M 2

o(aj) = 3 imy (Vji/wi)”.

Can generalize to multidimensions.
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Nonlinear Models

® Suppose model depends nonlinearly on the a;’s, e.g.,
y(x) = ay sin(asx + ag).
® Still minimize 2, but must proceed iteratively:

® Use ajei = acur — AV x?(acur) far from minimum (steepest
descent), where )\ is a constant.

® Use aet = acur — D7V x?(acu,)] close to minimum, where
D is the Hessian matrix.
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® o D comes from considering Taylor series expansion of f(x)
near a point P:

f(x) = ‘1‘2—337, Zaxﬂ%x%

1
~ c—b-x+ §XAX,

. Here A is

where c = f(P), b= -V f|p,and 4;; = 8:22aij .
the Hessian matrix. Note that Vf = Ax — b.
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® Close to its minimum, x? can be approximated by the above
quadratic form, and so an “exact” step can be taken to get to the
point where Vx? = 0. The stepisjustx’ —x = —A~ 1V f|p.

® In practice, terms involving the second derivatives of y with
respect to the fit parameters can be ignored, so the Hessian
matrix is much simpler to compute (recall the x? function contains
the model y).

® The Levenberg-Marquardt method adjusts X\ to smooth the
transition between these two regimes (vary between a diagonal
matrix and inverse Hessian).

» Cf. NRiC §15.5 for details of the L-M method.
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Levenberg-Marquardt method in NRiC

® NRIC provides two routines, mrgmin () and mrgcof (), that
implement the L-M method.

® The user must provide a function that computes y(x;) as well as
all the partial derivatives 0y /0a; evaluated at z;.

® The routine mrgmin () is called iteratively until a successful step
(i.e., one in which \ gets smaller) changes x? by less than a
fractional amount, like 0.001 (no point in doing better).
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® Points to consider:

# The argument list for mrgmin () is very complicated. For
example, you can request that some parameters be held fixed
(via input array ia).

# You need to specify an initial guess for each a; (and set
A < 0).

» Estimated variances in the parameters are returned as the
diagonal elements of the covariance matrix (covar), if you
call mrgmin () with A = 0.

# Also calls NRIC routines covsrt () and gaussj ().
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void mrgmin(float x[], float y[], float sig[],

int ma, float xxcovar, float xxalpha, float =xchisq,

void (xfuncs)(float, float [], float *x, float [], int), float =xalamda)
/+ Levenberg-Marquardt method, attempting to reduce the value of Chi"2 of a fit
between a set of data points x[1l..ndata], y[l..ndata] with individual standard
deviations sig[l..ndata], and a nonlinear function dependent on ma coefficients
a[l..ma]. The input array ia[l..ma] indicates by nonzero entries those
components of a that should be fitted for, and by zero entries those components
that should be held fixed at their input values. The program returns current
best fit values of the parameters a[l..ma], and Chi"2=chisq. ...
Supply a routine funcs(x,a,yfit,dyda,ma) that evaluates the fitting function
yfit, and its derivatives dyda[l..ma] with respect to the fitting parameters a
at x. On the first call provide an initial guess for the parameters a, and set
alambda<0 for initialization (which sets alambda=0.001). If a step succeeds
chisqg becomes smaller and alambda decreases by a factor of 10. If a step fails
alambda grows by a factor of 10. You must call this routine repeatedly until
convergence is achieved. Then, make a final call with alambda=0, so that
covar[l..ma][l..ma] returns the covariance matrix, and alpha the curvature

int ndata, float a[], int ia[],

matrix. (Parameters held fixed will return zero covariances.) x/
{
void covsrt(float xxcovar, int ma, int ia[], int mfit);
void gaussj(float xxa, int n, float =xxb, int m);

void mrqgcof(float x[], float y[], float sig[], int ndata, float a[],
int ia[], int ma, float xxalpha, float beta[], float =xchisq,
void (*funcs)(float, float [], float x, float [], int));

void fgauss(float x, float a[], float =xy, float dyda[], int na)

//The dimensions of the arrays are a[l..na], dyda[l..na].
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