
Modeling of Data
Massimo Ricotti

ricotti@astro.umd.edu

University of Maryland

Modeling of Data – p. 1/14

NRiC §15.

Model depends on adjustable parameters.

Can be used for “constrained interpolation.”

Basic approach:
1. Choose figure-of-merit function (e.g., χ2).
2. Adjust best-fit parameters: minimize merit function.
3. Compute goodness-of-fit.
4. Compute error estimates for parameters.

Modeling of Data – p. 2/14

Least Squares Fitting
Suppose we want to fit N data points (xi, yi) with a function that
depends onM parameters aj and that each data point has a
standard deviation σi. The maximum likelihood estimate of the
model parameters is obtained by minimizing:

χ2 ≡
N∑

i=1

[
yi − y(xi; a1...aM)

σi

]2
.

Assuming the errors are normally distributed, a “good fit” has
χ2 ∼ ν, where ν = N −M .

NOTE: Assumption of normal errors means glitches or outliers
in data may overbias the fit—see NRiC §15.7 for discussion of
more robust methods.
Grossly overestimated (underestimated) σi’s may give
incorrect impression that fit is very good (very bad).

Modeling of Data – p. 3/14

If uncertain about reliability of goodness-of-fit measure, could do
Monte Carlo simulations of fits to synthetic data.

Question: what to do if σi’s not known? Answer: choose an
arbitrary constant σ, perform the fit, then estimate σ from the fit:
σ2 =

∑N
i=1[yi − y(xi)]2/ν (note the denominator is what χ2 should

approximately be equal to, if the fit is good).

Modeling of Data – p. 4/14

Fitting Data to a Straight Line
(Linear Regression)

For this case the model is simply:

y(x) = y(x; a, b) = a+ bx,

and

χ2(a, b) =
N∑

i=1

(
yi − a− bxi

σi

)2

.

Derive formula for best-fit parameters by setting
∂χ2/∂a = 0 = ∂χ2/∂b. See NRiC §15.2 for the derivation (note:
sm uses the same formulae for its lsq routine).

Modeling of Data – p. 5/14

Derive uncertainties in a and b from propagation of errors:

σ2
f =

N∑

i=1

σ2
i

(
∂f

∂yi

)2

,

where f = a(xi, yi,σi), b(xi, yi,σi) in this case (the xi’s have no
uncertainties).

Want probability that χ2 is bad by chance
Q = gammq((N − 2)/2,χ2/2) > 10−3 (here (N − 2)/2 ≡ ν/2).

Modeling of Data – p. 6/14

General Linear Least Squares
Can generalize to any combination that is linear in aj ’s:

y(x) =
M∑

j=1

ajXj(x),

e.g., y(x) = a1 + a2x+ a3x2 + ...+ aMxM−1, or sines and cosines.

Define N ×M design matrix Aij = Xj(xi)/σi. Note N ≥ M for
the fit to make sense.

Also define vector b of length N where bi = yi/σi, and vector a of
lengthM where ai = a1, ..., aM .

Then we wish to find a that minimizes:

χ2 = |Aa− b|2.

This is what SVD solves!
Modeling of Data – p. 7/14

Recall for SVD we had A = UWVT.

Rewriting the SVD solution we get:

a =
M∑

j=1

(
U(j) · b

wj

)
V(j),

where U(j) (length N) and V(j) (lengthM) denote columns of U
and V, respectively.

As before, if wj is small (or zero), can set 1/wj = 0.
Useful because least-squares problems are generally both
overdetermined (N > M) and underdetermined (ambiguous
combinations of parameters exist)!

Can also compute variances of estimated parameters:
σ2(aj) =

∑M
i=1(Vji/wi)2.

Can generalize to multidimensions.
Modeling of Data – p. 8/14

Nonlinear Models
Suppose model depends nonlinearly on the aj ’s, e.g.,
y(x) = a1 sin(a2x+ a3).

Still minimize χ2, but must proceed iteratively:
Use anext = acur − λ∇χ2(acur) far from minimum (steepest
descent), where λ is a constant.
Use anext = acur −D−1[∇χ2(acur)] close to minimum, where
D is the Hessian matrix.

Modeling of Data – p. 9/14

D comes from considering Taylor series expansion of f(x)
near a point P:

f(x) = f(P) +
∑

i

∂f

∂xi
xi +

1

2

∑

i,j

∂2f

∂xi∂xj
xixj + ...

& c− b · x+
1

2
xAx,

where c ≡ f(P), b ≡ −∇f |P, and Aij ≡ ∂2f
∂xi∂xj

∣∣∣
P
. Here A is

the Hessian matrix. Note that∇f = Ax− b.

Modeling of Data – p. 10/14

Close to its minimum, χ2 can be approximated by the above
quadratic form, and so an “exact” step can be taken to get to the
point where∇χ2 = 0. The step is just x′ − x = −A−1∇f |P.

In practice, terms involving the second derivatives of y with
respect to the fit parameters can be ignored, so the Hessian
matrix is much simpler to compute (recall the χ2 function contains
the model y).

The Levenberg-Marquardt method adjusts λ to smooth the
transition between these two regimes (vary between a diagonal
matrix and inverse Hessian).

Cf. NRiC §15.5 for details of the L-M method.

Modeling of Data – p. 11/14

Levenberg-Marquardt method in NRiC
NRiC provides two routines, mrqmin() and mrqcof(), that
implement the L-M method.

The user must provide a function that computes y(xi) as well as
all the partial derivatives ∂y/∂aj evaluated at xi.

The routine mrqmin() is called iteratively until a successful step
(i.e., one in which λ gets smaller) changes χ2 by less than a
fractional amount, like 0.001 (no point in doing better).

Modeling of Data – p. 12/14

Points to consider:
The argument list for mrqmin() is very complicated. For
example, you can request that some parameters be held fixed
(via input array ia).
You need to specify an initial guess for each aj (and set
λ < 0).
Estimated variances in the parameters are returned as the
diagonal elements of the covariance matrix (covar), if you
call mrqmin() with λ = 0.
Also calls NRiC routines covsrt() and gaussj().

Modeling of Data – p. 13/14

void mrqmin(float x[], float y[], float sig[], int ndata, float a[], int ia[],
int ma, float **covar, float **alpha, float *chisq,
void (*funcs)(float, float [], float *, float [], int), float *alamda)

/* Levenberg-Marquardt method, attempting to reduce the value of Chiˆ2 of a fit
between a set of data points x[1..ndata], y[1..ndata] with individual standard
deviations sig[1..ndata], and a nonlinear function dependent on ma coefficients
a[1..ma]. The input array ia[1..ma] indicates by nonzero entries those
components of a that should be fitted for, and by zero entries those components
that should be held fixed at their input values. The program returns current
best fit values of the parameters a[1..ma], and Chiˆ2=chisq. ...
Supply a routine funcs(x,a,yfit,dyda,ma) that evaluates the fitting function
yfit, and its derivatives dyda[1..ma] with respect to the fitting parameters a
at x. On the first call provide an initial guess for the parameters a, and set
alambda<0 for initialization (which sets alambda=0.001). If a step succeeds
chisq becomes smaller and alambda decreases by a factor of 10. If a step fails
alambda grows by a factor of 10. You must call this routine repeatedly until
convergence is achieved. Then, make a final call with alambda=0, so that
covar[1..ma][1..ma] returns the covariance matrix, and alpha the curvature
matrix. (Parameters held fixed will return zero covariances.) */
{

void covsrt(float **covar, int ma, int ia[], int mfit);
void gaussj(float **a, int n, float **b, int m);
void mrqcof(float x[], float y[], float sig[], int ndata, float a[],

int ia[], int ma, float **alpha, float beta[], float *chisq,
void (*funcs)(float, float [], float *, float [], int));

......

......
void fgauss(float x, float a[], float *y, float dyda[], int na)
//The dimensions of the arrays are a[1..na], dyda[1..na].
{
......
......

Modeling of Data – p. 14/14

