# Modeling of Data

#### Massimo Ricotti

ricotti@astro.umd.edu

University of Maryland

- *INRiC* §15.
- Model depends on adjustable parameters.
- Can be used for "constrained interpolation."
- Basic approach:
  - 1. Choose *figure-of-merit* function (e.g.,  $\chi^2$ ).
  - 2. Adjust *best-fit parameters*: minimize merit function.
  - 3. Compute *goodness-of-fit*.
  - 4. Compute *error estimates* for parameters.

# Least Squares Fitting

Suppose we want to fit *N* data points  $(x_i, y_i)$  with a function that depends on *M* parameters  $a_j$  and that each data point has a standard deviation  $\sigma_i$ . The *maximum likelihood estimate* of the model parameters is obtained by minimizing:

$$\chi^2 \equiv \sum_{i=1}^N \left[ \frac{y_i - y(x_i; a_1 \dots a_M)}{\sigma_i} \right]^2.$$

- Assuming the errors are normally distributed, a "good fit" has  $\chi^2 \sim \nu$ , where  $\nu = N M$ .
  - NOTE: Assumption of normal errors means glitches or outliers in data may overbias the fit—see NRiC §15.7 for discussion of more robust methods.
  - Grossly overestimated (underestimated)  $\sigma_i$ 's may give incorrect impression that fit is very good (very bad).

- If uncertain about reliability of goodness-of-fit measure, could do Monte Carlo simulations of fits to synthetic data.
- Question: what to do if  $\sigma_i$ 's not known? Answer: choose an arbitrary constant  $\sigma$ , perform the fit, then estimate  $\sigma$  from the fit:  $\sigma^2 = \sum_{i=1}^{N} [y_i - y(x_i)]^2 / \nu$  (note the denominator is what  $\chi^2$  should approximately be equal to, if the fit is good).

# Fitting Data to a Straight Line (Linear Regression)

For this case the model is simply:

$$y(x) = y(x; a, b) = a + bx,$$

and

$$\chi^2(a,b) = \sum_{i=1}^N \left(\frac{y_i - a - bx_i}{\sigma_i}\right)^2.$$

Derive formula for best-fit parameters by setting  $\frac{\partial \chi^2}{\partial a} = 0 = \frac{\partial \chi^2}{\partial b}$ See *NRiC* §15.2 for the derivation (note: sm uses the same formulae for its lsq routine).

**Derive uncertainties in** a and b from propagation of errors:

$$\sigma_f^2 = \sum_{i=1}^N \sigma_i^2 \left(\frac{\partial f}{\partial y_i}\right)^2,$$

where  $f = a(x_i, y_i, \sigma_i), b(x_i, y_i, \sigma_i)$  in this case (the  $x_i$ 's have no uncertainties).

• Want probability that  $\chi^2$  is bad by chance  $Q = \text{gammq}((N-2)/2, \chi^2/2) > 10^{-3}$  (here  $(N-2)/2 \equiv \nu/2$ ).

### General Linear Least Squares

Solution Can generalize to any combination that is linear in  $a_j$ 's:

$$y(x) = \sum_{j=1}^{M} a_j X_j(x),$$

e.g.,  $y(x) = a_1 + a_2 x + a_3 x^2 + ... + a_M x^{M-1}$ , or sines and cosines.

- Define  $N \times M$  design matrix  $A_{ij} = X_j(x_i)/\sigma_i$ . Note  $N \ge M$  for the fit to make sense.
- Also define vector **b** of length N where  $b_i = y_i/\sigma_i$ , and vector **a** of length M where  $a_i = a_1, ..., a_M$ .

$$\chi^2 = |\mathbf{A}\mathbf{a} - \mathbf{b}|^2.$$



Recall for SVD we had  $A = UWV^T$ .

Rewriting the SVD solution we get:

$$\mathbf{a} = \sum_{j=1}^{M} \left( \frac{\mathbf{U}_{(j)} \cdot \mathbf{b}}{w_j} \right) \mathbf{V}_{(j)},$$

where  $U_{(j)}$  (length N) and  $V_{(j)}$  (length M) denote columns of U and V, respectively.

- Solution As before, if  $w_j$  is small (or zero), can set  $1/w_j = 0$ .
  - Useful because least-squares problems are generally *both* overdetermined (N > M) and underdetermined (ambiguous combinations of parameters exist)!
- Can also compute variances of estimated parameters:  $\sigma^2(a_j) = \sum_{i=1}^{M} (V_{ji}/w_i)^2.$
- Can generalize to multidimensions.

### Nonlinear Models

- Suppose model depends *nonlinearly* on the  $a_j$ 's, e.g.,  $y(x) = a_1 \sin(a_2 x + a_3).$
- Still minimize  $\chi^2$ , but must proceed iteratively:
  - Use  $\mathbf{a}_{next} = \mathbf{a}_{cur} \lambda \nabla \chi^2(\mathbf{a}_{cur})$  far from minimum (steepest descent), where  $\lambda$  is a constant.
  - Use  $\mathbf{a}_{next} = \mathbf{a}_{cur} \mathbf{D}^{-1} [\nabla \chi^2(\mathbf{a}_{cur})]$  close to minimum, where **D** is the *Hessian* matrix.

D comes from considering Taylor series expansion of f(x) near a point P:

$$f(\mathbf{x}) = f(\mathbf{P}) + \sum_{i} \frac{\partial f}{\partial x_{i}} x_{i} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} x_{i} x_{j} + \dots$$
$$\simeq c - \mathbf{b} \cdot \mathbf{x} + \frac{1}{2} \mathbf{x} \mathbf{A} \mathbf{x},$$

where  $c \equiv f(\mathbf{P})$ ,  $\mathbf{b} \equiv -\nabla f|_{\mathbf{P}}$ , and  $A_{ij} \equiv \frac{\partial^2 f}{\partial x_i \partial x_j}\Big|_{\mathbf{P}}$ . Here  $\mathbf{A}$  is the Hessian matrix. Note that  $\nabla f = \mathbf{A}\mathbf{x} - \mathbf{b}$ .

- Close to its minimum,  $\chi^2$  can be approximated by the above quadratic form, and so an "exact" step can be taken to get to the point where  $\nabla \chi^2 = 0$ . The step is just  $\mathbf{x}' \mathbf{x} = -\mathbf{A}^{-1} \nabla f|_{\mathbf{P}}$ .
- In practice, terms involving the second derivatives of y with respect to the fit parameters can be ignored, so the Hessian matrix is much simpler to compute (recall the  $\chi^2$  function contains the model y).
- The Levenberg-Marquardt method adjusts λ to smooth the transition between these two regimes (vary between a diagonal matrix and inverse Hessian).
  - Cf. *NRiC* §15.5 for details of the L-M method.

# Levenberg-Marquardt method in NRiC

- NRiC provides two routines, mrqmin() and mrqcof(), that implement the L-M method.
- The user must provide a function that computes  $y(x_i)$  as well as all the partial derivatives  $\partial y/\partial a_i$  evaluated at  $x_i$ .
- The routine mrqmin() is called iteratively until a successful step (i.e., one in which  $\lambda$  gets smaller) changes  $\chi^2$  by less than a fractional amount, like 0.001 (no point in doing better).

- Points to consider:
  - The argument list for mrqmin() is very complicated. For example, you can request that some parameters be held fixed (via input array ia).
  - You need to specify an initial guess for each  $a_j$  (and set  $\lambda < 0$ ).
  - Estimated variances in the parameters are returned as the diagonal elements of the *covariance matrix* (covar), if you call mrqmin() with  $\lambda = 0$ .
  - Also calls NRiC routines covsrt() and gaussj().

void (\*funcs)(float, float [], float \*, float [], int), float \*alamda) /\* Levenberg-Marguardt method, attempting to reduce the value of Chi<sup>2</sup> of a fit between a set of data points x[1..ndata], y[1..ndata] with individual standard deviations sig[1..ndata], and a nonlinear function dependent on ma coefficients a[1..ma]. The input array ia[1..ma] indicates by nonzero entries those components of a that should be fitted for, and by zero entries those components that should be held fixed at their input values. The program returns current best fit values of the parameters a[1..ma], and Chi<sup>2</sup>=chisq. ... Supply a routine funcs(x,a,yfit,dyda,ma) that evaluates the fitting function yfit, and its derivatives dyda[1..ma] with respect to the fitting parameters a at x. On the first call provide an initial guess for the parameters a, and set alambda<0 for initialization (which sets alambda=0.001). If a step succeeds chisq becomes smaller and alambda decreases by a factor of 10. If a step fails alambda grows by a factor of 10. You must call this routine repeatedly until convergence is achieved. Then, make a final call with alambda=0, so that covar[1..ma][1..ma] returns the covariance matrix, and alpha the curvature matrix. (Parameters held fixed will return zero covariances.) \*/ {

```
void fgauss(float x, float a[], float *y, float dyda[], int na)
//The dimensions of the arrays are a[1..na], dyda[1..na].
```

. . . . . .

••••