Random Numbers

\author{
Massimo Ricotti
 ```
ricotti@astro.umd.edu

``` \\ University of Maryland
}
- NRiC §7.
- Frequently needed to generate initial conditions.
- Often used to solve problems statistically.
- How can a computer generate a random number?
- It can't! Generators are pseudo-random.
- Generators are deterministic: it's always possible to produce the same sequence over and over.
- Sometimes this is a good thing!

\section*{Random Number Generators}
- User specifies an initial value, or seed.
- Initializing generator with same seed gives same sequence of "random" numbers.
- For a different sequence, use a different seed.
- One strategy is to use the current time, or the processor ID, to seed the generator.
- Problem: this may have poor dynamic range, or may be correlated with when the code is run.
- Solution: combine sources, e.g., int seed = (int) time (NULL) \% getpid() + getppid(), to get a more robust seed.

\section*{Choosing a Generator}
- Since generators do not produce truly random sequences, it's possible that your results may be affected by the generator used!
- Often the supplied generators on a given machine have poor statistical properties.
- But even a statistically sound generator can still be inadequate for a particular application.
- Be wary if you ever need more than \(\sim 10^{6}\) random numbers, and certainly if you need more than the largest representable integer!
- Solution: always compare results using two generators.

\section*{Guidelines}
- Follow these steps to minimize problems:
1. Always remember to seed the generator before using it (discarding any returned value).
2. Use seeds that are "somewhat random," i.e., have a good mixture of bits, e.g., 2731771 or 10293085 instead of 1 or 4096 or some other power of 2.
3. Avoid sequential seeds: they may cause correlations.
4. Compare results using at least two generators.
5. When publishing, indicate generator used.
6. Often it's a good idea to make a note of the seed used for a given run, in case you need to regenerate the sequence again later.

\section*{Uniform Deviates}
- Random numbers that lie within a specified range (typically 0 to 1), with any one number in the range as likely as any other, are uniform deviates, i.e.,
\[
p(x) d x= \begin{cases}d x & \text { if } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
\]
- Useful in themselves, often used to generate differently distributed deviates.
- Distinguish between linear generators (discussed next) and nonlinear generators (do a web search).

\section*{Linear Congruential Generators}
- Typical of most system-supplied generators.
- Produces series of integers \(I_{1}, I_{2}, I_{3}, \ldots\), each between 0 and \(m-1\), using:
\[
I_{j+1}=a I_{j}+c \quad(\bmod m),
\]
where \(m\) is the modulus, and \(a\) and \(c\) are positive integers called the multiplier and the increment, respectively.
- If \(m, a\), and \(c\) are properly chosen, all possible integers between 0 and \(m-1\) occur at some point.
- The choice of \(a=7^{5}=16807, c=0\), \(m=2^{31}-1=2147483647\) is known as the minimal standard generator.
- Often \(a\) and \(c\) chosen so as to have integer overflow on nearly every step, giving less predictable sequence and avoiding the mod operation.
- The LCG method is very fast but it suffers from sequential correlations.
- If \(k\) random numbers at a time are used to plot points in \(k\)-dimensional space, points tend to lie on ( \(k-1\) )-dimensional hyperplanes. There will be at most \(m^{1 / k}\) planes, e.g., \(\sim 1600\) if \(k=3\) and \(m=2^{32}\) !
- The quality of a LCG is measured by the maximum distance between successive hyperplanes: the smaller the distance, the better.

\section*{Example: ran0.f}


- Also, low-order bits may be less random than high-order bits, e.g., last bit alternating between 0 and 1 .
- To generate random number between 1 and 10 with rand(), use
\[
j=1+(\text { int })(10.0 * \text { rand }() /(\text { RAND_MAX }+1.0)) ;
\]
and not
\[
j=1+(1000.0 * \text { rand }() \div 10) ;
\]
(which uses lower-order bits).

\section*{NRiC RNGs}
- NRiC gives several uniform deviate generators:
\begin{tabular}{|c|c|l|}
\hline Generator & Speed & \multicolumn{1}{|c|}{ Notes } \\
\hline ran0 & 1.0 & Small multiple, serial correlations. \\
ran1 & 1.3 & General purpose, maximum \(10^{8}\) values. \\
ran2 & 2.0 & Like ran1, but longer period. \\
ran3 & 0.6 & Subtractive method, not well studied. \\
ranqd1 & 0.1 & Fast, machine-dependent. \\
ranqd2 & 0.3 & Ditto. \\
ran4 & 4.0 & Good properties, slow. \\
\hline
\end{tabular}
- On the department machines, see rand (), random (), and drand48().
- There is much discussion on the web of relative merits of RNGs. Recommended generators include TT800 and the Mersenne Twister.
- Bottom line: test it yourself, or use web-published testing routines, e.g., spectral methods.

\section*{Transformation Method}
- Suppose we want to generate a deviate from a distribution \(p(y) d y\), where \(p(y)=f(y)\) for some positive and normalized function \(f\), with \(y\) ranging from \(y_{\text {min }}\) to \(y_{\text {max }}\).
- Let \(F(y)\) be the cumulative distribution of \(f(y)\), from \(y_{\min }\) to \(y\), i.e., \(F(y)=\int_{y_{\text {min }}}^{y} f\left(y^{\prime}\right) d y^{\prime}\).
- Set a uniform deviate \(x=F(y) / F\left(y_{\max }\right)\) and solve for \(y\) : this is the new generation function.
- Only useful if \(F^{-1}(x)\) is easy to compute.

Example: Exponential deviates
- Suppose we want \(p(y) d y=e^{-y} d y, y \in[0, \infty)\).
- Apply the transformation method:
- Have \(f(y)=e^{-y}, F(y)=e^{-0}-e^{-y}=1-e^{-y}\).
- Set \(x=F(y) / F(\infty)\) and solve \(x\left(1-e^{-\infty}\right)=1-e^{-y}\) for \(y\).
- Get \(y(x)=-\ln (1-x)=-\ln (x)\) (since \(1-x\) is distributed the same as \(x\) ).
- So if \(x\) is a uniform deviate between 0 and \(1, y(x)(x>0)\) will be an exponential deviate.
- See NRiC §7.2 for Gaussian deviates.

Another example: A simple IMF
- Suppose we want to generate particle masses according to \(M d M=M^{\alpha} d M, M \in\left[M_{\min }, M_{\max }\right]\).
- From the transformation method we get:
\[
M=M_{\min }\left\{1+x\left[\left(\frac{M_{\max }}{M_{\min }}\right)^{\alpha+1}-1\right]\right\}^{\frac{1}{\alpha+1}}
\]
or
\[
M=\left[(1-x) M_{\min }^{\alpha+1}+x M_{\max }^{\alpha+1}\right]^{\frac{1}{\alpha+1}}
\]
- Notice that for a flat distribution \((\alpha=0)\), get expected result.
- What happens if \(\alpha=-1\) ? EFTS...

\section*{Initial Conditions}
- Often want to generate random initial conditions for a simulation, e.g., initial position and velocity.
- Must take care when using transformations, since may not get distribution you expect.
- For example, to fill a flat disk of radius \(R\) with random points is it better to:
1. Choose random \(\theta\) and \(r\) then set \(x=r \cos \theta, y=r \sin \theta\) ?
2. Fill a square and reject points with \(x^{2}+y^{2}>R^{2}\) ?

\section*{Initial Conditions}
- Often want to generate random initial conditions for a simulation, e.g., initial position and velocity.
- Must take care when using transformations, since may not get distribution you expect.
- For example, to fill a flat disk of radius \(R\) with random points is it better to:
1. Choose random \(\theta\) and \(r\) then set \(x=r \cos \theta, y=r \sin \theta\) ?
2. Fill a square and reject points with \(x^{2}+y^{2}>R^{2}\) ?

Answer: 2, but 1 will work if \(r^{2}\) (instead of \(r\) ) has a uniform random distribution.

\section*{Application: Cryptography}
- A simple encryption/decryption algorithm can be constructed using random number generators.
- If both parties know the initial seed, they can both reproduce the same sequence of values.
- However, communicating the seed between parties carries risk.
- One popular technique is to combine public and private keys for secure communication (the example below is called Diffie-Hellman Key Exchange).
- How do public and private keys work?
\begin{tabular}{c|l|l} 
Step & \multicolumn{2}{|c}{ You } \\
\hline 1 & Public: choose large prime \(p\). & \multicolumn{1}{|c}{ Public: choose Friend \(b\)} \\
\hline 2 & Private: choose \(x\). & no common factors with \(p-1\). \\
3 & Compute \(b^{x} \bmod p\) and send. & Compute \(b^{y} \bmod p\) and send. \\
4 & Compute \(k=b^{y x} \bmod p\). & Compute \(k=b^{x y} \bmod p\).
\end{tabular}
- \(k\) is the encryption key. This procedure relies on the fact that is is very difficult to factor large numbers.
- Also uses the handy relationship:
\[
\left(b^{y} \bmod p\right)^{x} \bmod p=\left(b^{y}\right)^{x} \bmod p, \text { for any } x, y
\]```

