Random Numbers

Massimo Ricotti

ricotti @stro. unmd. edu

University of Maryland

Random Numbers — p.1/1.

o o o 0

NRIC §7.
Frequently needed to generate initial conditions.
Often used to solve problems statistically.

How can a computer generate a random number?
It can’t! Generators are pseudo-random.

Generators are deterministic: it's always possible to produce
the same sequence over and over.

#® Sometimes this is a good thing!

Random Numbers — p.2/1

Random Number Generators

® User specifies an initial value, or seed.

®» Initializing generator with same seed gives same sequence of
“random” numbers.

For a different sequence, use a different seed.

°

One strategy is to use the current time, or the processor ID, to

seed the generator.

Problem: this may have poor dynamic range, or may be
correlated with when the code is run.

Solution: combine sources, e.g.,i nt seed = (int)
ti me(NULL) % getpid() + getppid(),togetamore
robust seed.

°

Random Numbers — p.3/1

Choosing a Generator

®» Since generators do not produce truly random sequences, it's
possible that your results may be affected by the generator used!

®» Often the supplied generators on a given machine have poor
statistical properties.

®» But even a statistically sound generator can still be inadequate for
a particular application.

® Be wary if you ever need more than ~ 10° random numbers, and
certainly if you need more than the largest representable integer!

$» Solution: always compare results using two generators.

Random Numbers — p.4/1:

Guidéelines

® Follow these steps to minimize problems:

1. Always remember to seed the generator before using it
(discarding any returned value).

2. Use seeds that are “somewhat random,” i.e., have a good
mixture of bits, e.qg., 2731771 or 10293085 instead of 1 or
4096 or some other power of 2.

Avoid sequential seeds: they may cause correlations.
Compare results using at least two generators.
When publishing, indicate generator used.

R

Often it's a good idea to make a note of the seed used for a
given run, in case you need to regenerate the sequence again
later.

Random Numbers — p.5/1

Uniform Deviates

$» Random numbers that lie within a specified range (typically O to
1), with any one number in the range as likely as any other, are
uniform deviates, i.e.,

dr 1f0<zx <1,
p(x)dz =
0 otherwise.

®» Useful in themselves, often used to generate differently distributed
deviates.

® Distinguish between linear generators (discussed next) and
nonlinear generators (do a web search).

Random Numbers — p.6/1

Linear Congruential Generators

®» Typical of most system-supplied generators.

®» Produces series of integers I+, I», I3, ..., each between 0 and
m — 1, using:
Iiy1 =alj+c (modm),

where m Is the modulus, and a and c are positive integers called
the multiplier and the increment, respectively.

® If m, a, and c are properly chosen, all possible integers between O
and m — 1 occur at some point.
The choice of a = 7° = 16807, ¢ = 0,
m = 231 — 1 = 2147483647 is known as the
minimal standard generator.

Often a and c chosen so as to have integer overflow on nearly
every step, giving less predictable sequence and avoiding the
mod operation.

Random Numbers — p.7/1

®» The LCG method is very fast but it suffers from sequential
correlations.

®» |If kL random numbers at a time are used to plot points in
k-dimensional space, points tend to lie on (k — 1)-dimensional
hyperplanes. There will be at most m!/* planes, e.g., ~ 1600 if
k =3 and m = 232!

®» The quality of a LCG is measured by the maximum distance
between successive hyperplanes: the smaller the distance, the
better.

Random Numbers — p.8/1

ranO.f

Example

S R — I.S-ll

tep ~5.95 x107°

e L L I L ———

-I—-!-x—r—-\-—-_h\-—-_——_r-_

0.004

0.003
0.002

— <
o
<
o

[L..L..] L U IR NP SRS N SN N [iy i g gy 5 IF.WUll—I.u-I k- e
T s T e e e s
Swpeiy —_ e = st o 2 28 i 2 . 1 e e o o s o m it . atmn . o]
frs oo e mem e e emam e s o mm s + s atmts o oo st e o 1 e o 5 s 2m 1
e e e = i m—— 1m — e am e ———— i |

I —— - S S——— P ————— [———
e = e i — — — - P
N — — -]

e T e e e T s
T L T I T I T T ST
sz s e T T T s]
e e e e e e ey

|

0.0001 0.00015%

5%10-5
NR ranO.f: 10° 2D points (x.y)

0.002 0.003 0.004 0.005 0

0.001

e e e

NR ranO.f: 10° 2D points (x,y)

Random Numbers — p.9/1

®» Also, low-order bits may be less random than high-order bits, e.qg.,
last bit alternating between 0 and 1.

o To generate random number between 1 and 10 with r and(),

use
j =1+ (int) (10.0+*rand()/(RAND MAX + 1.0));
and not

j =1 + (1000.0*rand() % 10);
(which uses lower-order bits).

Random Numbers — p.10/1

NRIC RNGs

®» NRIC gives several uniform deviate generators:

Generator | Speed Notes

ranO 1.0 Small multiple, serial correlations.
ranl 1.3 General purpose, maximum 10% values.
ran2 2.0 Like r anl, but longer period.
ran3 0.6 Subtractive method, not well studied.

ranqdl 0.1 Fast, machine-dependent.

ranqd2 0.3 Ditto.
ran4 4.0 Good properties, slow.

Random Numbers — p.11/1.

» On the department machines, see r and(), randon{), and
dr and48() .

®» There is much discussion on the web of relative merits of RNGs.
Recommended generators include TT800 and the
Mersenne Twister.

$» Bottom line: test it yourself, or use web-published testing routines,
e.g., spectral methods.

Random Numbers — p.12/1.

Transformation Method

$» Suppose we want to generate a deviate from a distribution
p(y) dy, where p(y) = f(y) for some positive and normalized
function f, with y ranging from y,in 10 Ymax-

® Let F'(y) be the cumulative distribution of f(y), from y,;, to ¥, i.e.,
Fly)= [fly)dy.

Ymin

® Set a uniform deviate x = F'(y)/F (ymax) @and solve for y: this is
the new generation function.

® Only useful if F~1(x) is easy to compute.

Random Numbers — p.13/1

Example: Exponential deviates

°

Suppose we want p(y) dy = e~ Y dy, y € [0, 00).

°

Apply the transformation method:

o Have f(y)=e ¥, F(y)=e " —e¥=1—-¢e"".

® Setx = F(y)/F(oc)andsolve (1 —e™>) =1—e"Y fory.

o Gety(x) =—In(l—x)= —In(z) (since 1 — x is distributed the
same as z).

® Soif z is a uniform deviate between 0 and 1, y(x) (z > 0) will be
an exponential deviate.

»® See NRIC §7.2 for Gaussian deviates.

Random Numbers — p.14/1

Another example: A smple IMF

>

9

| J

Suppose we want to generate particle masses according to
MdM = M*dM, M € [Muyin, Mmax]-

From the transformation method we get:

M a+1 ozL-l-l
(max) . 1] } |
Mmin

M=[1-z)Mt +2MEH]] 2

min max

MIMmin{1+ZIZ

or

Notice that for a flat distribution (o« = 0), get expected result.

What happens if « = —1? EFTS...

Random Numbers — p.15/1

Initial Conditions

» Often want to generate random initial conditions for a simulation,
e.g., initial position and velocity.

®» Must take care when using transformations, since may not get
distribution you expect.

®» For example, to fill a flat disk of radius R with random points is it
better to:
1. Choose random 6 and r then set z = rcos#, y = rsin6?
2. Fill a square and reject points with z2 + y? > R??

Random Numbers — p.16/1

Initial Conditions

» Often want to generate random initial conditions for a simulation,
e.g., initial position and velocity.

®» Must take care when using transformations, since may not get
distribution you expect.

®» For example, to fill a flat disk of radius R with random points is it
better to:
1. Choose random 6 and r then set z = rcos#, y = rsin6?
2. Fill a square and reject points with z2 + y? > R??

Answer: 2, but 1 will work if r? (instead of r) has a uniform
random distribution.

Random Numbers — p.16/1

Application: Cryptography

» A simple encryption/decryption algorithm can be constructed
using random number generators.

® |If both parties know the initial seed, they can both reproduce the
same sequence of values.

°

However, communicating the seed between parties carries risk.

°

One popular technigue is to combine public and private keys for
secure communication (the example below is called
Diffie-Hellman Key Exchange).

$» How do public and private keys work?

Random Numbers — p.17/1

Step You Your Friend

1 Public: choose large prime p. | Public: choose b,
no common factors with p — 1.
2 Private: choose . Private: choose .

Compute b* mod p and send. | Compute Y mod p and send.

Compute k£ = bY* mod p. Compute k£ = b*Y mod p.

® [is the encryption key. This procedure relies on the fact that is is
very difficult to factor large numbers.

® Also uses the handy relationship:

(6Y mod p)* mod p = (bY)* mod p, for any x, y.

Random Numbers — p.18/1

	
	Random Number Generators
	Choosing a Generator
	small Guidelines
	Uniform Deviates
	Linear Congruential Generators
	
	Example: ran0.f
	
		extit {NRiC} RNGs
	
	Transformation Method
	small Example: Exponential deviates
	small Another example: A simple IMF
	Initial Conditions
	Application: Cryptography
	

