
Random Numbers
Massimo Ricotti

ricotti@astro.umd.edu

University of Maryland

Random Numbers – p.1/18



NRiC §7.

Frequently needed to generate initial conditions.

Often used to solve problems statistically.

How can a computer generate a random number?

It can’t! Generators are pseudo-random.

Generators are deterministic: it’s always possible to produce
the same sequence over and over.

Sometimes this is a good thing!

Random Numbers – p.2/18



Random Number Generators
User specifies an initial value, or seed.

Initializing generator with same seed gives same sequence of
“random” numbers.

For a different sequence, use a different seed.

One strategy is to use the current time, or the processor ID, to
seed the generator.

Problem: this may have poor dynamic range, or may be
correlated with when the code is run.

Solution: combine sources, e.g., int seed = (int)

time(NULL) % getpid() + getppid(), to get a more
robust seed.

Random Numbers – p.3/18



Choosing a Generator
Since generators do not produce truly random sequences, it’s
possible that your results may be affected by the generator used!

Often the supplied generators on a given machine have poor
statistical properties.

But even a statistically sound generator can still be inadequate for
a particular application.

Be wary if you ever need more than ∼ 106 random numbers, and
certainly if you need more than the largest representable integer!

Solution: always compare results using two generators.

Random Numbers – p.4/18



Guidelines

Follow these steps to minimize problems:

1. Always remember to seed the generator before using it
(discarding any returned value).

2. Use seeds that are “somewhat random,” i.e., have a good
mixture of bits, e.g., 2731771 or 10293085 instead of 1 or
4096 or some other power of 2.

3. Avoid sequential seeds: they may cause correlations.

4. Compare results using at least two generators.

5. When publishing, indicate generator used.

6. Often it’s a good idea to make a note of the seed used for a
given run, in case you need to regenerate the sequence again
later.

Random Numbers – p.5/18



Uniform Deviates
Random numbers that lie within a specified range (typically 0 to
1), with any one number in the range as likely as any other, are
uniform deviates, i.e.,

p(x) dx =







dx if 0 ≤ x ≤ 1,

0 otherwise.

Useful in themselves, often used to generate differently distributed
deviates.

Distinguish between linear generators (discussed next) and
nonlinear generators (do a web search).

Random Numbers – p.6/18



Linear Congruential Generators
Typical of most system-supplied generators.

Produces series of integers I1, I2, I3, ..., each between 0 and
m − 1, using:

Ij+1 = aIj + c (mod m),

where m is the modulus, and a and c are positive integers called
the multiplier and the increment, respectively.

If m, a, and c are properly chosen, all possible integers between 0
and m − 1 occur at some point.

The choice of a = 75 = 16807, c = 0,
m = 231 − 1 = 2147483647 is known as the
minimal standard generator.

Often a and c chosen so as to have integer overflow on nearly
every step, giving less predictable sequence and avoiding the
mod operation.

Random Numbers – p.7/18



The LCG method is very fast but it suffers from sequential
correlations.

If k random numbers at a time are used to plot points in
k-dimensional space, points tend to lie on (k − 1)-dimensional
hyperplanes. There will be at most m1/k planes, e.g., ∼ 1600 if
k = 3 and m = 232!

The quality of a LCG is measured by the maximum distance
between successive hyperplanes: the smaller the distance, the
better.

Random Numbers – p.8/18



Example: ran0.f

Random Numbers – p.9/18



Also, low-order bits may be less random than high-order bits, e.g.,
last bit alternating between 0 and 1.

To generate random number between 1 and 10 with rand(),
use
j = 1 + (int) (10.0*rand()/(RAND_MAX + 1.0));

and not
j = 1 + (1000.0*rand() % 10);

(which uses lower-order bits).

Random Numbers – p.10/18



NRiC RNGs
NRiC gives several uniform deviate generators:

Generator Speed Notes

ran0 1.0 Small multiple, serial correlations.

ran1 1.3 General purpose, maximum 108 values.

ran2 2.0 Like ran1, but longer period.

ran3 0.6 Subtractive method, not well studied.

ranqd1 0.1 Fast, machine-dependent.

ranqd2 0.3 Ditto.

ran4 4.0 Good properties, slow.

Random Numbers – p.11/18



On the department machines, see rand(), random(), and
drand48().

There is much discussion on the web of relative merits of RNGs.
Recommended generators include TT800 and the
Mersenne Twister.

Bottom line: test it yourself, or use web-published testing routines,
e.g., spectral methods.

Random Numbers – p.12/18



Transformation Method
Suppose we want to generate a deviate from a distribution
p(y) dy, where p(y) = f(y) for some positive and normalized
function f , with y ranging from ymin to ymax.

Let F (y) be the cumulative distribution of f(y), from ymin to y, i.e.,
F (y) =

∫ y

ymin
f(y′) dy′.

Set a uniform deviate x = F (y)/F (ymax) and solve for y: this is
the new generation function.

Only useful if F−1(x) is easy to compute.

Random Numbers – p.13/18



Example: Exponential deviates

Suppose we want p(y) dy = e−y dy, y ∈ [0,∞).

Apply the transformation method:

Have f(y) = e−y, F (y) = e−0 − e−y = 1 − e−y.

Set x = F (y)/F (∞) and solve x(1 − e−∞) = 1 − e−y for y.

Get y(x) = − ln(1 − x) = − ln(x) (since 1 − x is distributed the
same as x).

So if x is a uniform deviate between 0 and 1, y(x) (x > 0) will be
an exponential deviate.

See NRiC §7.2 for Gaussian deviates.

Random Numbers – p.14/18



Another example: A simple IMF

Suppose we want to generate particle masses according to
M dM = Mα dM , M ∈ [Mmin, Mmax].

From the transformation method we get:

M = Mmin

{

1 + x

[

(

Mmax

Mmin

)α+1

− 1

]}
1

α+1

,

or

M =
[

(1 − x)Mα+1

min
+ xMα+1

max

]
1

α+1 .

Notice that for a flat distribution (α = 0), get expected result.

What happens if α = −1? EFTS...

Random Numbers – p.15/18



Initial Conditions
Often want to generate random initial conditions for a simulation,
e.g., initial position and velocity.

Must take care when using transformations, since may not get
distribution you expect.

For example, to fill a flat disk of radius R with random points is it
better to:

1. Choose random θ and r then set x = r cos θ, y = r sin θ?

2. Fill a square and reject points with x2 + y2 > R2?

Random Numbers – p.16/18



Initial Conditions
Often want to generate random initial conditions for a simulation,
e.g., initial position and velocity.

Must take care when using transformations, since may not get
distribution you expect.

For example, to fill a flat disk of radius R with random points is it
better to:

1. Choose random θ and r then set x = r cos θ, y = r sin θ?

2. Fill a square and reject points with x2 + y2 > R2?

Answer: 2, but 1 will work if r2 (instead of r) has a uniform
random distribution.

Random Numbers – p.16/18



Application: Cryptography
A simple encryption/decryption algorithm can be constructed
using random number generators.

If both parties know the initial seed, they can both reproduce the
same sequence of values.

However, communicating the seed between parties carries risk.

One popular technique is to combine public and private keys for
secure communication (the example below is called
Diffie-Hellman Key Exchange).

How do public and private keys work?

Random Numbers – p.17/18



Step You Your Friend

1 Public: choose large prime p. Public: choose b,

no common factors with p − 1.

2 Private: choose x. Private: choose y.

3 Compute bx mod p and send. Compute by mod p and send.

4 Compute k = byx mod p. Compute k = bxy mod p.

k is the encryption key. This procedure relies on the fact that is is
very difficult to factor large numbers.

Also uses the handy relationship:

(by mod p)x mod p = (by)x mod p, for any x, y.

Random Numbers – p.18/18


	
	Random Number Generators
	Choosing a Generator
	small Guidelines
	Uniform Deviates
	Linear Congruential Generators
	
	Example: ran0.f
	
		extit {NRiC} RNGs
	
	Transformation Method
	small Example: Exponential deviates
	small Another example: A simple IMF
	Initial Conditions
	Application: Cryptography
	

