
Ordinary Differential Equations
Massimo Ricotti

ricotti@astro.umd.edu

University of Maryland

Ordinary Differential Equations – p. 1/18

NRiC §16.

ODEs involve derivatives with respect to one independent
variable, e.g., time t.

ODEs can always be reduced to a set of first-order equations (i.e.,
involving only first derivatives). E.g.,

d2y

dt2
+ b(t)

dy

dt
= c(t)

is equivalent to the set

dy

dt
= z(t),

dz

dt
= c(t)− b(t)z(t).

Ordinary Differential Equations – p. 2/18

Example: gravity! In 1-D,

F = ma = mẍ = −GMm

x2
= Fg.

Let v(t) = ẋ. Then v̇ = −GM/x2. In 3-D, just write out
equations for each component (we’ll see this again...).

Usually new variables just derivatives of old, but sometimes need
additional factors of t to avoid pathologies.

General problem is solving set of 1st-order ODEs,

dyi
dt

= f ′
i(t, y1, ..., yN),

Ordinary Differential Equations – p. 3/18

where the f ′
i are known functions.a

But, also need boundary conditions: algebraic conditions on
values of yi at discrete time(s) t...

aOften ODEs are coupled to begin with, e.g., classic Lotka-Volterra predator-
prey model:

ẋ = Ax−Bxy − ex,

ẏ = −Cy +Dxy − dy.

Here x and y might represent the population of rabbits and foxes, respectively.
Then A is the reproduction rate of the rabbits, B is the consumption rate of
rabbits by the foxes, C is the death rate by natural causes of the foxes, and
D is the population increase rate of the foxes due to consumption of rabbits.
We’ve also added terms with coefficients d and e representing the hunting rate
by humans. For d = e = 0, the equilibrium solution of this system is cyclical.

Ordinary Differential Equations – p. 4/18

Another Astrophysical Example:
Time-dependent chemistry of the ISM/IGM
For pure Hydrogen gas:

ṅHI = −ΓnHI − CnHIne + αnpne,

ne = np,

n = np + nHI = const

Adding Helium:

ṅHeI = −Γ1nHeI − C1nHeIne + α1nHeIIne,

ṅHeIII = Γ2nHeII + C2nHeIIne − α2nHeIIIne,

ne = np + nHeII + 2nHeIII ,

n = nHeI + nHeII + nHeIII = const

Ordinary Differential Equations – p. 5/18

ODE Boundary Conditions (BCs)
Two categories of BC:
1. Initial Value Problem (IVP): all yi’s are given at some starting

point ts, and solution is needed from ts to tf .
2. Two-point Boundary Value Problem (BVP): yi are specified at

two or more t, e.g., some at ts, some at tf (only one BC
needed for each yi).

Generally, IVP much easier to solve than 2-pt BVP, so consider
this first.

Ordinary Differential Equations – p. 6/18

Finite Differences
How do you represent derivatives with a discrete number system?

Basic idea: replace dy/dt with finite differences ∆y/∆t. Then:

lim
∆t→0

∆y

∆t
→ dy

dt
.

How do you use this to solve ODEs?

Ordinary Differential Equations – p. 7/18

Euler’s Method
Write ∆y/∆t = f ′(t,y) ⇒ ∆y = ∆t f ′(t,y).

Start with known values yn at tn (initial values).

Then yn+1 at tn+1 = tn + h is

yn+1 = yn + hf ′(tn,yn).

h is called the step size.

Ordinary Differential Equations – p. 8/18

Integration is not symmetric: derivative evaluated only at start of
step⇒ error term O(h2), from Taylor series
(f(x+ h) = f(x) + hf ′(x) + 1

2h
2f ′′(x) + ...). So, Euler’s method is

first order.

xn+1xn xn+2

yn

yn+1

Ordinary Differential Equations – p. 9/18

Example: consider ẏ = y with y(0) = 1. We know the solution to
be y = et. Using Euler’s method with h = 1/2, we find

y0 = 1,

y1 = y0 + y0/2 = 3/2,

y2 = y1 + y1/2 = 9/4,

y3 = y2 + y2/2 = 27/8,
...

...
...

yn = (32)
n,

i.e., the solution is always ≤ et (since t = nh = n/2 and
e1/2

.
= 1.65).

Ordinary Differential Equations – p. 10/18

Runge-Kutta Methods
We can do better by symmetrizing the derivative:

Take a trial Euler step to midpoint: compute tn+1/2 and
evaluate yn+1/2.
Use these to evaluate derivative f ′(tn+1/2,yn+1/2).
Then use this to go back and take a full step.

Thus:

yn+1 = yn + hf ′
[
tn +

1

2
h,yn +

1

2
hf ′(tn,yn)

]
+O(h3).

Ordinary Differential Equations – p. 11/18

Can show that O(h2) terms “cancel,” so leading error term is
O(h3), giving 2nd-order Runge-Kutta (midpoint method).

xn+1xn xn+2

yn

xn+1/2

Ordinary Differential Equations – p. 12/18

Following previous example, first step using midpoint method:

y1 = y0 + (1/2)f ′(0 + 1/4, 1 + (1/4)f ′(0, 1)),

= 1 + (1/2)f ′(1/4, 5/4),

= 1 + (1/2)(5/4),

= 1 + 5/8,

= 1.625.

Ordinary Differential Equations – p. 13/18

The idea behind midpoint method is to use Euler but with
derivative at midpoint:

y(t+h) = y(t)+hf ′(t+
1

2
h) = y(t)+h

[
f ′(t) +

1

2
hf ′′(t)

]
+O(h3).

This is essentially a Taylor series within a Taylor series.

Use Euler to determine derivative at midpoint:

k1 = hf ′(tn, yn),

k2 = hf ′(tn +
1

2
h, yn +

1

2
k1),

yn+1 = yn + k2 +O(h3).

Ordinary Differential Equations – p. 14/18

Fourth-order Runge-Kutta
Actually, there are many ways to evaluate f ′ at midpoints, which
add higher-order error terms with different coefficients. Can add
these together in ways such that higher-order error terms cancel.
E.g., can build 4th-order Runge-Kutta (RK4):

k1 = hf ′(tn,yn),

k2 = hf ′(tn + h/2,yn + k1/2),

k3 = hf ′(tn + h/2,yn + k2/2),

k4 = hf ′(tn + h,yn + k3).

Then:

yn+1 = yn + k1/6 + k2/3 + k3/3 + k4/6 +O(h5).

Ordinary Differential Equations – p. 15/18

xn xn+1

actual step

trial steps

Ordinary Differential Equations – p. 16/18

#include "nrutil.h"

void rk4(float y[], float dydx[], int n, float x, float h, float yout[],
void (*derivs)(float, float [], float []))

int i;
float xh,hh,h6,*dym,*dyt,*yt;

dym=vector(1,n);
dyt=vector(1,n);
yt=vector(1,n);
hh=h*0.5;
h6=h/6.0;
xh=x+hh;
for (i=1;i<=n;i++) yt[i]=y[i]+hh*dydx[i];
(*derivs)(xh,yt,dyt);
for (i=1;i<=n;i++) yt[i]=y[i]+hh*dyt[i];
(*derivs)(xh,yt,dym);
for (i=1;i<=n;i++)
yt[i]=y[i]+h*dym[i];
dym[i] += dyt[i];

(*derivs)(x+h,yt,dyt);
for (i=1;i<=n;i++)
yout[i]=y[i]+h6*(dydx[i]+dyt[i]+2.0*dym[i]);
free_vector(yt,1,n);
free_vector(dyt,1,n);
free_vector(dym,1,n);

/* (C) Copr. 1986-92 Numerical Recipes Software ?421.1-9. */

Ordinary Differential Equations – p. 17/18

Disadvantage of RK4: requires f ′ to be evaluated 4 times per step.

But, can still be cost effective if larger steps OK.

RK4 is a workhorse method. Higher-order RK4 takes too much
effort for increased accuracy.

Other methods (e.g., Bulirsch-Stoer, NRiC §16.4) are more
accurate for smooth functions.

But RK4 often “good enough.”

Ordinary Differential Equations – p. 18/18

