Ordinary Differential Equations

Massimo Ricotti

ricotti@astro.umd.edu

University of Maryland

INRiC §16.

- ODEs involve derivatives with respect to one independent variable, e.g., time t.
- ODEs can always be reduced to a set of first-order equations (i.e., involving only first derivatives). E.g.,

$$\frac{d^2y}{dt^2} + b(t)\frac{dy}{dt} = c(t)$$

is equivalent to the set

$$\frac{dy}{dt} = z(t),$$

$$\frac{dz}{dt} = c(t) - b(t)z(t).$$

$$F = ma = m\ddot{x} = -\frac{GMm}{x^2} = F_g.$$

Let $v(t) = \dot{x}$. Then $\dot{v} = -GM/x^2$. In 3-D, just write out equations for each component (we'll see this again...).

- Usually new variables just derivatives of old, but sometimes need additional factors of t to avoid pathologies.
- General problem is solving set of 1st-order ODEs,

$$\frac{dy_i}{dt} = f'_i(t, y_1, \dots, y_N),$$

- where the f'_i are known functions.^a
- But, also need boundary conditions: algebraic conditions on values of y_i at discrete time(s) t...

^aOften ODEs are coupled to begin with, e.g., classic Lotka-Volterra predatorprey model:

$$\dot{x} = Ax - Bxy - ex,$$

$$\dot{y} = -Cy + Dxy - dy.$$

Here x and y might represent the population of rabbits and foxes, respectively. Then A is the reproduction rate of the rabbits, B is the consumption rate of rabbits by the foxes, C is the death rate by natural causes of the foxes, and D is the population increase rate of the foxes due to consumption of rabbits. We've also added terms with coefficients d and e representing the hunting rate by humans. For d = e = 0, the equilibrium solution of this system is cyclical.

Another Astrophysical Example:

Time-dependent chemistry of the ISM/IGM For pure Hydrogen gas:

$$\dot{n}_{HI} = -\Gamma n_{HI} - C n_{HI} n_e + \alpha n_p n_e,$$

$$n_e = n_p,$$

$$n = n_p + n_{HI} = const$$

Adding Helium:

$$\dot{n}_{HeI} = -\Gamma_1 n_{HeI} - C_1 n_{HeI} n_e + \alpha_1 n_{HeII} n_e,$$

$$\dot{n}_{HeIII} = \Gamma_2 n_{HeII} + C_2 n_{HeII} n_e - \alpha_2 n_{HeIII} n_e,$$

$$n_e = n_p + n_{HeII} + 2n_{HeIII},$$

$$n = n_{HeI} + n_{HeII} + n_{HeIII} = const$$

ODE Boundary Conditions (BCs)

- Two categories of BC:
 - 1. Initial Value Problem (IVP): all y_i 's are given at some starting point t_s , and solution is needed from t_s to t_f .
 - 2. Two-point Boundary Value Problem (BVP): y_i are specified at two or more t, e.g., some at t_s , some at t_f (only one BC needed for each y_i).
- Generally, IVP much easier to solve than 2-pt BVP, so consider this first.

Finite Differences

- How do you represent derivatives with a discrete number system?
- Solution Basic idea: replace dy/dt with finite differences $\Delta y/\Delta t$. Then:

$$\lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t} \to \frac{dy}{dt}.$$

How do you use this to solve ODEs?

Euler's Method

Start with known values y_n at t_n (initial values).

$$\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{f}'(t_n, \mathbf{y}_n).$$

$$\bullet$$
 h is called the step size.

Integration is not symmetric: derivative evaluated only at start of step \Rightarrow error term $\mathcal{O}(h^2)$, from Taylor series $(f(x+h) = f(x) + hf'(x) + \frac{1}{2}h^2f''(x) + ...)$. So, Euler's method is <u>first order</u>.

Solution Example: consider $\dot{y} = y$ with y(0) = 1. We know the solution to be $y = e^t$. Using Euler's method with h = 1/2, we find

$$y_0 = 1,$$

$$y_1 = y_0 + y_0/2 = 3/2,$$

$$y_2 = y_1 + y_1/2 = 9/4,$$

$$y_3 = y_2 + y_2/2 = 27/8,$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$y_n = (\frac{3}{2})^n,$$

i.e., the solution is always $\leq e^t$ (since t = nh = n/2 and $e^{1/2} \doteq 1.65$).

Runge-Kutta Methods

We can do better by symmetrizing the derivative:

- Take a trial Euler step to midpoint: compute $t_{n+1/2}$ and evaluate $y_{n+1/2}$.
- Use these to evaluate derivative $f'(t_{n+1/2}, y_{n+1/2})$.
- Then use this to go back and take a full step.

.

$$\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{f}'\left[t_n + \frac{1}{2}h, \mathbf{y}_n + \frac{1}{2}h\mathbf{f}'(t_n, \mathbf{y}_n)\right] + \mathcal{O}(h^3).$$

• Can show that $\mathcal{O}(h^2)$ terms "cancel," so leading error term is $\mathcal{O}(h^3)$, giving <u>2nd-order</u> Runge-Kutta (midpoint method).

Following previous example, first step using midpoint method:

$$y_1 = y_0 + (1/2)f'(0 + 1/4, 1 + (1/4)f'(0, 1)),$$

= 1 + (1/2)f'(1/4, 5/4),

$$= 1 + (1/2)(5/4),$$

$$= 1+5/8,$$

$$=$$
 1.625.

The idea behind midpoint method is to use Euler but with derivative at midpoint:

$$y(t+h) = y(t) + hf'(t+\frac{1}{2}h) = y(t) + h\left[f'(t) + \frac{1}{2}hf''(t)\right] + \mathcal{O}(h^3).$$

This is essentially a Taylor series within a Taylor series.

Use Euler to <u>determine</u> derivative at midpoint:

$$k_{1} = hf'(t_{n}, y_{n}),$$

$$k_{2} = hf'(t_{n} + \frac{1}{2}h, y_{n} + \frac{1}{2}k_{1}),$$

$$y_{n+1} = y_{n} + k_{2} + \mathcal{O}(h^{3}).$$

Fourth-order Runge-Kutta

Actually, there are many ways to evaluate f' at midpoints, which add higher-order error terms with different coefficients. Can add these together in ways such that higher-order error terms cancel. E.g., can build 4th-order Runge-Kutta (RK4):

$$\begin{aligned} \mathbf{k}_1 &= h\mathbf{f}'(t_n, \mathbf{y}_n), \\ \mathbf{k}_2 &= h\mathbf{f}'(t_n + h/2, \mathbf{y}_n + \mathbf{k}_1/2), \\ \mathbf{k}_3 &= h\mathbf{f}'(t_n + h/2, \mathbf{y}_n + \mathbf{k}_2/2), \\ \mathbf{k}_4 &= h\mathbf{f}'(t_n + h, \mathbf{y}_n + \mathbf{k}_3). \end{aligned}$$

Then:

$$\mathbf{y}_{n+1} = \mathbf{y}_n + \mathbf{k}_1/6 + \mathbf{k}_2/3 + \mathbf{k}_3/3 + \mathbf{k}_4/6 + \mathcal{O}(h^5).$$

 x_{n+1} X_n

```
#include "nrutil.h"
void rk4(float y[], float dydx[], int n, float x, float h, float yout[],
void (*derivs)(float, float [], float []))
int i;
float xh,hh,h6,*dym,*dyt,*yt;
dym=vector(1,n);
dyt=vector(1,n);
yt=vector(1,n);
hh=h*0.5;
h6=h/6.0;
xh=x+hh;
for (i=1;i<=n;i++) yt[i]=y[i]+hh*dydx[i];</pre>
(*derivs)(xh,yt,dyt);
for (i=1;i<=n;i++) yt[i]=y[i]+hh*dyt[i];</pre>
(*derivs)(xh,yt,dym);
for (i=1;i<=n;i++)</pre>
yt[i]=y[i]+h*dym[i];
dym[i] += dyt[i];
(*derivs)(x+h,yt,dyt);
for (i=1;i<=n;i++)</pre>
yout[i]=y[i]+h6*(dydx[i]+dyt[i]+2.0*dym[i]);
free vector(yt,1,n);
free vector(dyt,1,n);
free vector(dym,1,n);
```

/* (C) Copr. 1986-92 Numerical Recipes Software ?421.1-9. */

- Disadvantage of RK4: requires f' to be evaluated 4 times per step.
- But, can still be cost effective if larger steps OK.
- RK4 is a workhorse method. Higher-order RK4 takes too much effort for increased accuracy.
- Other methods (e.g., Bulirsch-Stoer, NRiC §16.4) are more accurate for <u>smooth</u> functions.
- But RK4 often "good enough."