Ordinary Differential Equations

Massimo Ricotti
ricotti@astro.umd.edu

University of Maryland

- NRiC §16.
- ODEs involve derivatives with respect to one independent variable, e.g., time t.
- ODEs can always be reduced to a set of first-order equations (i.e., involving only first derivatives). E.g.,

$$
\frac{d^{2} y}{d t^{2}}+b(t) \frac{d y}{d t}=c(t)
$$

is equivalent to the set

$$
\begin{aligned}
& \frac{d y}{d t}=z(t) \\
& \frac{d z}{d t}=c(t)-b(t) z(t)
\end{aligned}
$$

- Example: gravity! In 1-D,

$$
F=m a=m \ddot{x}=-\frac{G M m}{x^{2}}=F_{g} .
$$

Let $v(t)=\dot{x}$. Then $\dot{v}=-G M / x^{2}$. In 3-D, just write out equations for each component (we'll see this again...).

- Usually new variables just derivatives of old, but sometimes need additional factors of t to avoid pathologies.
- General problem is solving set of $1^{\text {st }}$-order ODEs,

$$
\frac{d y_{i}}{d t}=f_{i}^{\prime}\left(t, y_{1}, \ldots, y_{N}\right)
$$

- where the f_{i}^{\prime} are known functions. ${ }^{a}$
- But, also need boundary conditions: algebraic conditions on values of y_{i} at discrete time(s) $t \ldots$
${ }^{a}$ Often ODEs are coupled to begin with, e.g., classic Lotka-Volterra predatorprey model:

$$
\begin{aligned}
\dot{x} & =A x-B x y-e x \\
\dot{y} & =-C y+D x y-d y
\end{aligned}
$$

Here x and y might represent the population of rabbits and foxes, respectively. Then A is the reproduction rate of the rabbits, B is the consumption rate of rabbits by the foxes, C is the death rate by natural causes of the foxes, and D is the population increase rate of the foxes due to consumption of rabbits. We've also added terms with coefficients d and e representing the hunting rate by humans. For $d=e=0$, the equilibrium solution of this system is cyclical.

Another Astrophysical Example:

Time-dependent chemistry of the ISM/IGM

 For pure Hydrogen gas:$$
\begin{aligned}
\dot{n}_{H I} & =-\Gamma n_{H I}-C n_{H I} n_{e}+\alpha n_{p} n_{e} \\
n_{e} & =n_{p} \\
n & =n_{p}+n_{H I}=\mathrm{const}
\end{aligned}
$$

Adding Helium:

$$
\begin{aligned}
\dot{n}_{\mathrm{HeI}} & =-\Gamma_{1} n_{\mathrm{HeI}}-C_{1} n_{\mathrm{HeI}} n_{e}+\alpha_{1} n_{\mathrm{HeII}} n_{e} \\
\dot{n}_{\mathrm{HeIII}} & =\Gamma_{2} n_{\mathrm{HeII}}+C_{2} n_{\mathrm{HeII}} n_{e}-\alpha_{2} n_{\mathrm{HeIII}} n_{e} \\
n_{e} & =n_{p}+n_{\mathrm{HeII}}+2 n_{\mathrm{HeIII}} \\
n & =n_{\mathrm{HeI}}+n_{\mathrm{HeII}}+n_{\mathrm{HeIII}}=\mathrm{const}
\end{aligned}
$$

ODE Boundary Conditions (BCs)

- Two categories of BC:

1. Initial Value Problem (IVP): all y_{i} 's are given at some starting point t_{s}, and solution is needed from t_{s} to t_{f}.
2. Two-point Boundary Value Problem (BVP): y_{i} are specified at two or more t, e.g., some at t_{s}, some at t_{f} (only one BC needed for each y_{i}).

- Generally, IVP much easier to solve than 2-pt BVP, so consider this first.

Finite Differences

- How do you represent derivatives with a discrete number system?
- Basic idea: replace $d y / d t$ with finite differences $\Delta y / \Delta t$. Then:

$$
\lim _{\Delta t \rightarrow 0} \frac{\Delta y}{\Delta t} \rightarrow \frac{d y}{d t}
$$

- How do you use this to solve ODEs?

Euler's Method

- Write $\Delta \mathbf{y} / \Delta t=\mathbf{f}^{\prime}(t, \mathbf{y}) \Rightarrow \Delta \mathbf{y}=\Delta t \mathbf{f}^{\prime}(t, \mathbf{y})$.
- Start with known values \mathbf{y}_{n} at t_{n} (initial values).
- Then \mathbf{y}_{n+1} at $t_{n+1}=t_{n}+h$ is

$$
\mathbf{y}_{n+1}=\mathbf{y}_{n}+h \mathbf{f}^{\prime}\left(t_{n}, \mathbf{y}_{n}\right)
$$

- h is called the step size.
- Integration is not symmetric: derivative evaluated only at start of step \Rightarrow error term $\mathcal{O}\left(h^{2}\right)$, from Taylor series $\left(f(x+h)=f(x)+h f^{\prime}(x)+\frac{1}{2} h^{2} f^{\prime \prime}(x)+\ldots\right)$. So, Euler's method is first order.

- Example: consider $\dot{y}=y$ with $y(0)=1$. We know the solution to be $y=e^{t}$. Using Euler's method with $h=1 / 2$, we find

$$
\begin{aligned}
y_{0} & =1 \\
y_{1} & =y_{0}+y_{0} / 2=3 / 2 \\
y_{2} & =y_{1}+y_{1} / 2=9 / 4 \\
y_{3} & =y_{2}+y_{2} / 2=27 / 8 \\
\vdots & \vdots \\
y_{n} & =\left(\frac{3}{2}\right)^{n}
\end{aligned}
$$

i.e., the solution is always $\leq e^{t}$ (since $t=n h=n / 2$ and $\left.e^{1 / 2} \doteq 1.65\right)$.

Runge-Kutta Methods

- We can do better by symmetrizing the derivative:
- Take a trial Euler step to midpoint: compute $t_{n+1 / 2}$ and evaluate $\mathbf{y}_{n+1 / 2}$.
- Use these to evaluate derivative $\mathbf{f}^{\prime}\left(t_{n+1 / 2}, \mathbf{y}_{n+1 / 2}\right)$.
- Then use this to go back and take a full step.
- Thus:

$$
\mathbf{y}_{n+1}=\mathbf{y}_{n}+h \mathbf{f}^{\prime}\left[t_{n}+\frac{1}{2} h, \mathbf{y}_{n}+\frac{1}{2} h \mathbf{f}^{\prime}\left(t_{n}, \mathbf{y}_{n}\right)\right]+\mathcal{O}\left(h^{3}\right) .
$$

- Can show that $\mathcal{O}\left(h^{2}\right)$ terms "cancel," so leading error term is $\mathcal{O}\left(h^{3}\right)$, giving $\underline{2}^{\text {nd }}$-order Runge-Kutta (midpoint method).

- Following previous example, first step using midpoint method:

$$
\begin{aligned}
y_{1} & =y_{0}+(1 / 2) f^{\prime}\left(0+1 / 4,1+(1 / 4) f^{\prime}(0,1)\right) \\
& =1+(1 / 2) f^{\prime}(1 / 4,5 / 4) \\
& =1+(1 / 2)(5 / 4) \\
& =1+5 / 8 \\
& =1.625
\end{aligned}
$$

- The idea behind midpoint method is to use Euler but with derivative at midpoint:
$y(t+h)=y(t)+h f^{\prime}\left(t+\frac{1}{2} h\right)=y(t)+h\left[f^{\prime}(t)+\frac{1}{2} h f^{\prime \prime}(t)\right]+\mathcal{O}\left(h^{3}\right)$.
This is essentially a Taylor series within a Taylor series.
- Use Euler to determine derivative at midpoint:

$$
\begin{aligned}
k_{1} & =h f^{\prime}\left(t_{n}, y_{n}\right) \\
k_{2} & =h f^{\prime}\left(t_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} k_{1}\right) \\
y_{n+1} & =y_{n}+k_{2}+\mathcal{O}\left(h^{3}\right)
\end{aligned}
$$

Fourth-order Runge-Kutta

- Actually, there are many ways to evaluate f^{\prime} at midpoints, which add higher-order error terms with different coefficients. Can add these together in ways such that higher-order error terms cancel. E.g., can build $4^{\text {th }}$-order Runge-Kutta (RK4):

$$
\begin{aligned}
\mathbf{k}_{1} & =h \mathbf{f}^{\prime}\left(t_{n}, \mathbf{y}_{n}\right) \\
\mathbf{k}_{2} & =h \mathbf{f}^{\prime}\left(t_{n}+h / 2, \mathbf{y}_{n}+\mathbf{k}_{1} / 2\right) \\
\mathbf{k}_{3} & =h \mathbf{f}^{\prime}\left(t_{n}+h / 2, \mathbf{y}_{n}+\mathbf{k}_{2} / 2\right) \\
\mathbf{k}_{4} & =h \mathbf{f}^{\prime}\left(t_{n}+h, \mathbf{y}_{n}+\mathbf{k}_{3}\right)
\end{aligned}
$$

Then:

$$
\mathbf{y}_{n+1}=\mathbf{y}_{n}+\mathbf{k}_{1} / 6+\mathbf{k}_{2} / 3+\mathbf{k}_{3} / 3+\mathbf{k}_{4} / 6+\mathcal{O}\left(h^{5}\right)
$$


```
#include "nrutil.h"
void rk4(float y[], float dydx[], int n, float x, float h, float yout[],
void (*derivs)(float, float [], float []))
int i;
float xh,hh,h6,*dym,*dyt,*yt;
dym=vector(1,n);
dyt=vector(1,n);
yt=vector(1,n);
hh=h*0.5;
h6=h/6.0;
xh=x+hh;
for (i=1;i<=n;i++) yt[i]=y[i]+hh*dydx[i];
(*derivs)(xh,yt,dyt);
for (i=1;i<=n;i++) yt[i]=y[i]+hh*dyt[i];
(*derivs)(xh,yt,dym);
for (i=1;i<=n;i++)
yt[i]=y[i]+h*dym[i];
dym[i] += dyt[i];
(*derivs)(x+h,yt,dyt);
for (i=1;i<=n;i++)
yout[i]=y[i]+h6*(dydx[i]+dyt[i]+2.0*dym[i]);
free_vector(yt,1,n);
free_vector(dyt,1,n);
free_vector(dym,1,n);
/* (C) Copr. 1986-92 Numerical Recipes Software ?421.1-9. */
```

- Disadvantage of RK4: requires f^{\prime} to be evaluated 4 times per step.
- But, can still be cost effective if larger steps OK.
- RK4 is a workhorse method. Higher-order RK4 takes too much effort for increased accuracy.
- Other methods (e.g., Bulirsch-Stoer, NRiC §16.4) are more accurate for smooth functions.
- But RK4 often "good enough."

