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NRIC §16.

ODEs involve derivatives with respect to one independent

variable, e.g., time t.

ODEs can always be reduced to a set of first-order equations (i.e.,
involving only first derivatives). E.g.,

d*y dy
— 4+ b(t)— = c(t
IS equivalent to the set
dy
A — t
dz

dt
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®» o Example: gravity! In 1-D,

M
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Let v(t) = 2. Then v = —GM /2. In 3-D, just write out
equations for each component (we’ll see this again...).

® Usually new variables just derivatives of old, but sometimes need
additional factors of ¢ to avoid pathologies.

® General problem is solving set of 15t-order ODEs,

dy;
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dt fz( Y1 yN)
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® where the f; are known functions.?

® But, also need boundary conditions: algebraic conditions on
values of y; at discrete time(s) «...

20ften ODEs are coupled to begin with, e.g., classic Lotka-Volterra predator-

prey model:

r = Ax— Bxy— ex,
y = —Cy+ Dxy—dy.

Here x and y might represent the population of rabbits and foxes, respectively.
Then A is the reproduction rate of the rabbits, B is the consumption rate of
rabbits by the foxes, (' is the death rate by natural causes of the foxes, and
D is the population increase rate of the foxes due to consumption of rabbits.
We've also added terms with coefficients d and e representing the hunting rate

by humans. For d = e = 0, the equilibrium solution of this system is cyclical.
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Another Astrophysical Example:

Time-dependent chemistry of the ISM/IGM
For pure Hydrogen gas:

NHI
Ne

n

Adding Helium:

NHel =
NHeIIl =
Ne =

n =

= —I'ngr — Cngrne + anyne,
p— np’

= Ny +ngr = const

—I'inger — Cingerne + 01N geriNe,
Uongerr + Congerine — QoNperrine,
Ny +NHeIT + 2N HeI 1T,

NHel + NHeIl + NHeI11 = CONSt

Ord

inary Differential Equatio

ns —p. 5/18



ODE Boundary Conditions (BCs)

®» Two categories of BC:
1. Initial Value Problem (IVP): all y;’s are given at some starting
point ¢5, and solution is needed from ¢, to ¢ +.
2. Two-point Boundary Value Problem (BVP): y, are specified at
two or more ¢, e.g., some at ¢, some at ¢ (only one BC
needed for each y;).

® Generally, IVP much easier to solve than 2-pt BVP, so consider
this first.
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Finite Differences

$» How do you represent derivatives with a discrete number system?

® Basic idea: replace dy/dt with finite differences Ay/At. Then:

lim — — —.
Azlsr—r>lo At dt

® How do you use this to solve ODEs?
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Euler’s Method

® Write Ay/At=1'(t,y) = Ay = Atf'(t,y).
$ Start with known values y,, at t,, (initial values).

®» Theny,.i;att,,1 =t,+his

Yn+tl1 = Yn + hf/(tna Yn)-

® | is called the step size.
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® Integration is not symmetric: derivative evaluated only at start of
step = error term O(h?), from Taylor series
(f(x+ h) = f(z) + hf'(x) + 3h%f"(z) + ...). So, Euler’s method is
first order.

X Xnsl Kne2
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® Example: consider y = y with y(0) = 1. We know the solution to
be y = e’. Using Euler’s method with » = 1/2, we find

Yo
Y1
Y2
Y3

Yn

1,

Yo + Yo/2
Y1 + y1/2
Yo + y2/2

3/2,
9/4,
27/8,

i.e., the solution is always < e' (since ¢t = nh = n/2 and

el/2 = 1.65).
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Runge-Kutta Methods

® We can do better by symmetrizing the derivative:

» Take a trial Euler step to midpoint: compute ¢,,, /2 and
evaluate y,, 11 /2.

» Use these to evaluate derivative f'(¢,,1 /2, yn+1/2)-
# Then use this to go back and take a full step.

® Thus:

1 1
Yntl = Yn + hf’ tn + §h7 Yn + ihf/(tna Yn) + O(hg)
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® Can show that O(h?) terms “cancel,” so leading error term is
O(h?), giving 2"4-order Runge-Kutta (midpoint method).

X Xpwl K2

Xn+1/2
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® Following previous example, first step using midpoint method:

yi = yo+(1/2)f(0+1/4,1+ (1/4)f'(0,1)),
= 1+(1/2)f(1/4,5/4),
= 1+(1/2)(5/4),
= 1+5/8,
= 1.625.
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® The idea behind midpoint method is to use Euler but with
derivative at midpoint:

y(t+h) =y(t)+hf (t+ %h) =y(t)+h [f’(t) + %hf”(t)] + O(R?).

This is essentially a Taylor series within a Taylor series.

® Use Euler to determine derivative at midpoint:

kl — hf/<tn7yn>7
1 1
k2 — hf/<tn —+ §h,yn -+ §k1>,
Un+1 = Yn T ko + O(hg)

Ordinary Differential Equations — p. 14/18



Fourth-order Runge-Kutta

® Actually, there are many ways to evaluate f’ at midpoints, which
add higher-order error terms with different coefficients. Can add
these together in ways such that higher-order error terms cancel.
E.g., can build 4t*-order Runge-Kutta (RK4):

ki = hf'(tn,yn),

ke = hf'(t, +h/2,y, +ki/2),
ks = hf'(t,+h/2,y, +ka/2),
ky = hf'(t, +h,y, +ks).

Then:
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#include "nrutil.h"

void rk4(float y[], float dydx[], int n, float x, float

void (*derivs) (float, float [], float []))

int i;
float xh,hh,h6,xdym, xdyt, xyt;

dym=vector(1l,n);

dyt=vector(1l,n);

yt=vector(l,n);

hh=hx%0.5;

h6=h/6.0;

xh=x+hh;

for (i=1l;i<=n;i++) yt[i]=y[i]+hhxdydx[i];
(xderivs) (xh,yt,dyt);

for (i=1l;i<=n;i++) yt[i]=y[i]+hhxdyt[i];
(xderivs) (xh,yt,dym);

for (i=1l;i<=n;i++)

yt[il=y[i]+h*dym[i];

dym[i] += dyt[i];

(*derivs) (x+h,yt,dyt);

for (i=1l;i<=n;i++)

yout[i]=y[i]+h6x* (dydx[i]+dyt[i]+2.0xdym[i]);
free vector(yt,1,n);

free vector(dyt,1,n);

free vector(dym,1,n);

h, float yout[],

/% (C) Copr. 1986-92 Numerical Recipes Software ?421.1-9. =/
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Disadvantage of RK4: requires f’ to be evaluated 4 times per step.
But, can still be cost effective if larger steps OK.

RK4 is a workhorse method. Higher-order RK4 takes too much
effort for increased accuracy.

Other methods (e.g., Bulirsch-Stoer, NRiC §16.4) are more
accurate for smooth functions.

But RK4 often “good enough’”
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