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The Leapfrog Integrator
Very useful for second-order DEs in which d2

x/dt2 = f(x), e.g.,
SHM, N -body, etc.

NOTE: Now dropping the prime (′) from f ...

Suppose x is position, so d2
x/dt2 is acceleration.

Procedure: define v = dx/dt at the midpoints of the steps, i.e.,
velocities staggered wrt positions.

Set vn+1/2 = v(tn + 1

2
h).

Then advance xn to xn+1 and vn+1/2 to vn+3/2:

xn+1 = xn + hvn+1/2,

vn+3/2 = vn+1/2 + hf(xn+1).
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x0 x1 x2

v1/2 v3/2 v5/2

t0 t1/2 t1 t3/2 t2 t5/2
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Complication: need to “jumpstart” and “resync”...

vn+1/2 = vn + (h/2)f(xn) [opening “kick”: Euler]

xn+1 = xn + hvn+1/2 [“drift”]

vn+1 = vn+1/2 + (h/2)f(xn+1) [closing “kick”: resync]

Note vn+3/2 = vn+1 + (h/2)f(xn+1) = vn+1/2 + hf(xn+1).
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Also have “drift-kick-drift” (DKD) scheme.

Like midpoint method, Leapfrog is second order:

x(t + h) = x(t) + hv(t + h/2),

but

v(t + h/2) = v(t) + (h/2)f(t) + O(h2).

Therefore

x(t + h) = x(t) + hv(t) + (h2/2)f(t) + O(h3).

This is formally equivalent to midpoint method.
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So why is Leapfrog so great?...

Answer: Leapfrog is time reversible.

Suppose we step back from (tn+1,xn+1,vn+3/2) to
(tn,xn,vn+1/2). Applying the algorithm:

vn+1/2 = vn+3/2 + (−h)f(xn+1),

xn = xn+1 + (−h)vn+1/2.

These are precisely the steps (in reverse) that we took to advance
the system in the first place!

Hence if we Leapfrog forward in time, then reverse to t = 0, we’re
back to where we started, precisely.
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Leapfrog is time reversible because of the symmetric way in which
it is defined, unlike the other schemes.

In Euler, forward and backward steps do not cancel since they
use different derivatives at different times.

In Midpoint, the estimate of the derivative is based on an
extrapolation from the left-hand side of the interval. On time
reversal, the estimate would be based on the right-hand side,
not the same.

Similarly, RK4 is not time reversible.

Time reversibility is important because it guarantees conservation
of energy, angular momentum, etc. (in many cases).

Suppose the integrator makes an error ε after one orbital
period. Now reverse. Is the error −ε? No! The time-reversed
orbit is a solution of the original ODE (with v replaced with
−v), so the energy error is still +ε. But we’ve returned to our
starting point, so we know the final energy error is zero.
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Leapfrog is only second order, but very stable.

Leapfrog is an example of a class of “symplectic” integrators that
conserve phase-space volume: exactly solves an approximate
Hamiltonian system.

H = HD + HK + Herr =
1

2
v2 + V (r) + Herr,

or D(h/2)K(h)D(h/2), with Herr ∼ O(h3). You can also construct
the usual kick-drift-kick scheme, K(h/2)D(h)K(h/2), because the
Hamiltonian is separable.
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Adaptive Stepsize Control
Up to now, have assumed stepsize h is constant.

Clearly prefer choosing h small when |f ′| is large, and h large
when |f ′| is small. (We’ve reintroduced the prime (′) notation, just
to be confusing...)

The tradeoff is extra trial steps to determine optimum h, but may
achieve factor of 10 to 100 increase in stepsize, so it’s often worth
it.

NRiC provides a routine odeint() for RK4 with adapative
stepsize control. Complicated to use!
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