Ordinary Differential Equations

$$
\text { Part } 4
$$

Massimo Ricotti
ricotti@astro.umd.edu
University of Maryland

Two-point Boundary Value Problems

- NRiC §17.
- BCs specified at two or more points, e.g., start and end.
- For IVP, just integrate away.
- For 2-pt BVP, must make a free choice of unknown BVs at initial point, then integrate away. But solution will almost certainly not satisfy other BCs at end.
- Strategy: Use information about how much the other BVs "missed" to iteratively improve initial guess.
\Longrightarrow Techniques are all iterative (and expensive).

Notation

- Denote standard system as:

$$
\frac{d y_{i}(x)}{d x}=g_{i}\left(x, y_{1}, \ldots, y_{N}\right) \quad i=1, \ldots, N .
$$

- At x_{1}, the solution is supposed to satisfy:

$$
B_{1 j}\left(x, y_{1}, \ldots, y_{N}\right)=0 \quad j=1, \ldots, n_{1} .
$$

- At x_{2}, it is supposed to satisfy:

$$
B_{2 k}\left(x, y_{1}, \ldots, y_{N}\right)=0 \quad k=1, \ldots, n_{2},
$$

where $n_{2}=N-n_{1}$.

Two Basic Techniques: Shooting method

1. Begin at x_{1}.
2. Guess values for free BCs (n_{2} values).
3. Integrate as IVP to x_{2}.
4. Adjust n_{2} guesses to get closer to BVs at x_{2}.

- Heart of technique: system of iteratively improving guesses.
\Longrightarrow Multi-D root finding.

Two Basic Techniques: Relaxation method

1. Replace ODEs by finite-difference equations on mesh from x_{1} to x_{2}.
2. Guess solution on this mesh.
3. Mathematically, FDEs are just algebraic relations between unknowns. Use iterative technique to relax this solution to true solution.

- Relaxation very powerful for smooth solutions, or ODEs that must be solved many times with different parameter values. Also good when ODEs have extraneous solutions, i.e., stiff equations.
- NRiC: "Shoot first, relax later."

2-pt BVP: Shooting Method

1. At x_{1}, must specify N starting values for $y_{i}, i=1, \ldots, N$ (in NR user provided function load ()).

- n_{1} values given by BC at x_{1}.
- $\therefore n_{2}=N-n_{1}$ values can be freely chosen.

2. Represent the free values as a vector \mathbf{V} of dimension n_{2} (actually, V represents schematically any parameter value that specifies unknown BVs).
3. Now integrate to x_{2}.
4. Define "discrepancy vector" \mathbf{F} of dimension n_{2} (in NR, user provided function score()), where

$$
F_{k}=B_{2 k}\left(x_{2}, \mathbf{y}\right) \quad k=1, \ldots, n_{2}
$$

- We want to find V that zeroes F .

5 Solve n_{2} linear equations:

$$
\mathbf{J} \delta \mathbf{V}=-\mathbf{F}
$$

where $J_{i j} \equiv \partial F_{i} / \partial V_{j}$ is the Jacobian matrix.

- This is the globally convergent Newton's method (NRiC §9.7).

6 Then $\mathbf{V}_{\text {new }}=\mathbf{V}_{\text {old }}+\delta \mathbf{V}$.
7 Use $\mathbf{V}_{\text {new }}$ to solve ODEs again as IVP, recompute \mathbf{F}, and iterate again until $|\mathbf{F}|<\varepsilon$, the convergence criterion.

- Cannot compute Jacobian analytically. Instead evaluate differences numerically, i.e.,

$$
\frac{\partial F_{i}}{\partial V_{j}} \simeq \frac{F_{i}\left(V_{1}, \ldots, V_{j}+\Delta V_{j}, \ldots, V_{n_{2}}\right)-F_{i}\left(V_{1}, \ldots, V_{j}, \ldots, V_{n_{2}}\right)}{\Delta V_{j}}
$$

i.e., solve IVP n_{2} times varying each component of \mathbf{V} by $\Delta \mathbf{V}$ each time to build up Jacobian (recall $F_{i}\left(V_{1}, \ldots, V_{n_{2}}\right)$ already computed in step 4).

- Overall procedure requires $n_{2}+1$ solutions to ODEs per iteration.
- For linear systems, one iteration is enough.
- For nonlinear systems, many (say M) iterations may be required to converge $\Longrightarrow M \times\left(n_{2}+1\right)$ solutions of ODEs!
- \therefore need efficient integrator... (NRiC routine shoot () uses odeint() and is called by newt ()).
- NOTE: Can also shoot to a fitting point between x_{1} and x_{2} (NRiC §17.2). Useful for singular BC(s) and/or domain point(s).


```
#define NRANSI
#include "nrutil.h"
#define EPS 1.0e-6
extern int nvar;
extern float x1,x2;
int kmax,kount;
float *xp,**yp,dxsav;
void shoot(int n, float v[], float f[])
{
void derivs(float x, float y[], float dydx[]);
void load(float x1, float v[], float y[]);
void odeint(float ystart[], int nvar, float x1, float x2,
float eps, float h1, float hmin, int *nok, int *nbad,
void (*derivs)(float, float [], float []),
void (*rkqs)(float [], float [], int, float *, float, float,
float [], float *, float *, void (*)(float, float [], float [])));
void rkqs(float y[], float dydx[], int n, float *x,
float htry, float eps, float yscal[], float *hdid, float *hnext,
void (*derivs)(float, float [], float []));
void score(float xf, float y[], float f[]);
int nbad,nok;
float h1,hmin=0.0,*y;
y=vector(1,nvar);
kmax=0;
h1=(x2-x1)/100.0;
load(x1,v,y);
odeint(y,nvar,x1,x2,EPS,h1,hmin,&nok,&nbad,derivs,rkqs);
score(x2,y,f);
free_vector(y,1,nvar);
}
#undef EPS
#undef NRANSI
/* (C) Copr. 1986-92 Numerical Recipes Software ?421.1-9. */
```


2-pt BVP: Relaxation Method

Procedure:

1. Replace ODE (e.g., $d y / d x=g(x, y))$ with FDE on a grid: ${ }^{a}$

$$
y_{k}-y_{k-1}-\left(x_{k}-x_{k-1}\right) g\left[\frac{1}{2}\left(x_{k}+x_{k-1}\right), \frac{1}{2}\left(y_{k}+y_{k-1}\right)\right]=0 .
$$

- Here x_{k} and y_{k} are discrete values of independent and dependent variables at "mesh points."

- For M mesh points and N coupled equations, have $M \times N y_{k}$'s to solve for.

2 Guess starting values for all y_{k}.
3 Iteratively improve ("relax") solution using N-R. The correct solution is obtained when the boundary conditions are satisfied and the difference equations between grid points, like the one above, are zeroed to the desired accuracy.

- Need to solve a matrix equation each iteration, where the matrix is $(M \times N) \times(M \times N)$ in size, but is also block diagonal (for which efficient solving algorithms exist). The block diagonal form comes from first-order Taylor series expansions of the FDEs about each pair of grid points. ${ }^{a}$
- Choice of grid points is an important issue and leads to adaptive mesh strategies in modern solvers.

[^0]
Example: Stellar Structure

- Numerical methods for 2-pt BVPs largely developed by astronomers seeking to solve equations of stellar structure.
- Form a system of four coupled ODEs.

Equations of stellar structure

1. Consider spherical shell, thickness $d r$, distance r from origin.

Then $d M=4 \pi r^{2} d r \rho$, or,

$$
\frac{d M}{d r}=4 \pi r^{2} \rho
$$

2. Hydrostatic equilibrium \Longrightarrow net force on shell is zero.
$\therefore-\nabla_{r} P-\rho g=0$, where $g=$ gravitational acceleration per unit mass $=G M / r^{2}$, or,

$$
\frac{d P}{d r}=-\frac{G M}{r^{2}} \rho .
$$

(To derive, note upward force on shell per unit area $=$ $P(r)-P(r+\Delta r)=-\Delta P$ must equal downward force per unit area $=\left[G M(r) / r^{2}\right]\left(M_{\text {shell }} / 4 \pi r^{2}\right)=\left(G M / r^{2}\right) \rho d r$.)
3. Let $\varepsilon=$ energy generation rate/unit mass. Then energy transport rate through shell $\Delta L=L(r+\Delta r)-L(r)$ must equal energy generation rate $4 \pi r^{2} d r \varepsilon \rho$, where $L=$ luminosity, or,

$$
\frac{d L}{d r}=4 \pi r^{2} \varepsilon \rho
$$

4. Finally, there is a relationship between luminosity through shell, "thermal conductivity" across shell, and temperature gradient (transport dominant in white dwarfs):

$$
\frac{d T}{d r} \propto-\frac{L}{\kappa},
$$

where,
higher $\kappa \rightarrow$ lower T gradient;
higher $L \rightarrow$ higher T gradient.

- This equation harder to derive since it depends on energy transport mechanism and convective stability that differs from star to star and with depth inside a star. Eg, for radiative transport:

$$
\frac{d T}{d r} \propto-\frac{\alpha \rho L}{\sigma T^{3}},
$$

where α is the gas opacity.

- This gives 4 ODEs in 7 unknowns ($M, \rho, P, L, T, \varepsilon, \kappa$).
- Need 3 constitutive relations:

1. $P=P(\rho, T)$ - equation of state.
2. $\varepsilon=\varepsilon(\rho, T)$ - nuclear energy generation rate.
3. $\kappa=\kappa(\rho, T)$ - thermal conductivity.

- Boundary conditions (need 4):
- At $r=0: M=0, L=0$.
- At $r=R_{\star}\left(M=M_{\star}\right): P=0, \rho=0(\Rightarrow T=0)$.
- This is a classic 2-pt BVP.
- First techniques developed based on shooting method.
- Singularity at $r=0 \Longrightarrow$ must fit at an intermediate point: Schwarzschild Scheme (e.g., Schwarzchild, Structure and Evolution of the Stars).
- Modern stellar structure codes use relaxation method with adaptive mesh (e.g., P. Eggleton, MNRAS, 151, 351 (1971)).

Polytropes

- Can illustrate technique with calculation of structure of polytropes.
- Assume there is no energy generation anywhere inside ($\varepsilon \equiv 0$), e.g., white dwarf or neutron star.
- Assume EOS of form $P=k \rho^{(n+1) / n}$ (no T dependence).
- E.g., EOS for monatomic gas (such as degenerate electron gas) is:
$P \propto \rho^{5 / 3}$ if non-relativistic ($n=3 / 2$);
$P \propto \rho^{4 / 3}$ if relativistic ($n=3$).
- This form is called a polytropic EOS. n is polytropic index.
- It is convenient to rewrite $\rho=\rho_{c} \theta^{n}$. Then the first stellar structure equation becomes

$$
\frac{d \mathcal{M}}{d \mathcal{R}}=\mathcal{R}^{2} \theta^{n}
$$

and the second becomes

$$
\frac{d \theta}{d \mathcal{R}}=-\frac{\mathcal{M}}{\mathcal{R}^{2}},
$$

where $\mathcal{R} \equiv r / r_{0}, \mathcal{M} \equiv M / M_{0}$, with $M_{0}=4 \pi r_{0}^{3} \rho_{c}$ and $r_{0}^{2}=(n+1) k \rho_{c}^{1 / n-1} / 4 \pi G$.

- These are the "Lane-Emden Equations."
- This is a system of 2 ODEs with $\operatorname{BC} \mathcal{M}=0$ at $\mathcal{R}=0$ and $\theta=0$ at $\mathcal{R}=R_{\star} / r_{0}$.
- If we have a desired R_{\star} known in advance (or, equivalently, M_{\star}), then we can set $\theta=1$ at $\mathcal{R}=0$, integrate and find \mathcal{R} or \mathcal{M} where $\theta=0$. The mass or radius wanted at $\theta=0$ sets ρ_{c}.

- Solutions of Lane Emden equation for $n=0,1,2,3,4,5$.

[^0]: ${ }^{a}$ Each interior point supplies a block of N equations coupling $2 N$ corrections to the solution variables at points $k, k-1$. The boundary conditions supply smaller blocks, $n_{1} \times N$ and $n_{2} \times N$.

