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The PM Method, Continued
There are several distinct steps in PM process:
1. Assign particles to mesh to compute ρi.
2. Get boundary conditions for Φ (Φ0 and ΦN+1).
3. Solve discretized version of Poisson’s
equation.

4. Compute F from discretized version of force
equation.
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Step 1: Assigning particles to mesh
Discuss two schemes here:

1. Nearest Grid Point (NGP) scheme:
Assign entire mass of particle to grid zone that contains it.
E.g., discretize space into N zones in x-dimension:

i i+1i 1

1

Set ρi = nim/∆x, where ni = number of particles in cell i
(equal mass).
Leads to a very coarse distribution of ρi:

1
2
3
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2 Cloud-In-Cell (CIC) or Particle-In-Cell (PIC):
Assign a “shape” or “cloud” to particle.
Assume a distribution of ρ inside this shape.
Then distribute mass to zones according to overlap.
E.g., assume particle has top-hat ρ distribution, width w,
height ρ0 = m/w:

x
w

= m/w
0
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Then (in 1-D),
∫∞
−∞ ρ(x) dx = m. Distribute mass of particle

according to overlap:

Leads to smoother ρi.

Can adopt more complex shapes for density. E.g.,

Triangle
Gaussian

etc.

Higher-order “shapes” introduce ringing into system.
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Step 2: Boundary conditions
Given ρi, i = 1, ..., N , need a boundary value for Φ, i.e., need Φ0

and ΦN+1.

Often can use periodic BC, i.e., Φ0 = ΦN , ΦN+1 = Φ1.
Appropriate for, e.g., cosmology simulations.

Otherwise, standard to use multipole expansion (e.g., Jackson
1975) to compute potential on boundary due to mass in each cell.

Often, first (monopole) term is good enough:

ΦB(r) = − GM

|r− rCM | .

See Binney & Tremaine (second ed), Ch .24, Eq. 2.95 for full
series (involves spherical harmonics).
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Step 3: Solve Poisson�’s equation
Can see that discretized equation

Φi−1 − 2Φi + Φi+1

(∆x)2
= 4πGρi

leads to tri-diagonal (tri-di) matrix:
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4πGρ1(∆x)2 − Φ0

4πGρ2(∆x)2

4πGρ3(∆x)2

...

...
4πGρN (∆x)2 − ΦN+1
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There is an extremely efficient algorithm for solving tri-di systems.
Write discretized system as:

aiΦi−1 + biΦi + ciΦi+1 = di.

Then forward elimination gives (Hockney & Eastwood, p.
185):a

w1 =
c1
b1

wi =
ci

bi − aiwi−1
,

(i = 2, 3, ..., N − 1), and,

g1 =
d1
b1

gi =
di − aigi−1

bi − aiwi−1
.

aAlso see tridag() (NRiC §2.4).
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Backsubstitution:

ΦN = gN

Φi = gi − wiΦi+1,

with i = N − 1, N − 2, ..., 1.

If a, b, c constant, can precompute wi and 1/(bi − aiwi−1).

If a = 1, b = −2, c = 1, only need 4N operations.

For periodic BC, even simpler method possible (Hockney &
Eastwood, p. 35).
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Step 4: Force interpolation
Once potential is given, must compute force (per unit mass) from
F = −∇Φ.

In 1-D, F = −∂Φ/∂x ⇒ FDE Fi+1/2 = −(Φi+1 − Φi)/∆x.
Forces centered at cell boundaries:

F Fi 1/2 i+1/2

ii 1 i+1
Must interpolate forces to particle positions.
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Linear interpolation simplest. For each particle, position
xi−1/2 < x < xi+1/2, compute:

F(x) = Fi−1/2 +

(
x− xi−1/2

∆x

)(
Fi+1/2 − Fi−1/2

)
.

Higher-order interpolation used in conjunction with higher-order
charge-assignment schemes.

We now have ingredients necessary for a 1-D PM code:

1. Particle assignment;

2. Boundary conditions;

3. Solve Poisson’s equation;

4. Force interpolation.
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Generalizing to 3-D
Generalizing to 3-D is straightforward:
1. Particle assignment: use NGP; or for PIC, particle is sphere.
2. BCs: periodic, or use 3-D multipole expansion.
3. Solve Poisson’s equation in 3-D (see below).
4. Interpolate F in 3-D (easy).

Poisson’s equation in 3-D:

∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
= 4πGρ.
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Discretize Φ in 3-D:

Φ(x, y, z) → Φi,j,k,

ρ(x, y, z) → ρi,j,k.

FDE becomes:

Φi−1,j,k − 2Φi,j,k + Φi+1,j,k

(∆x)2
+

Φi,j−1,k − 2Φi,j,k + Φi,j+1,k

(∆y)2

+
Φi,j,k−1 − 2Φi,j,k + Φi,j,k+1

(∆z)2
= 4πGρi,j,k.
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Can be written in matrix form:

aiΦi,j,k−1 + biΦi,j−1,k + ciΦi−1,j,k + diΦi,j,k +

+ eiΦi+1,j,k + fiΦi,j+1,k + giΦi,j,k+1 = hi,

where i = 1, ..., Nx, j = 1, ..., Ny, k = 1, ..., Nz and

ci = ei = 1/(∆x)2 di = −2
[
(1/∆x)2 + (1/∆y)2 + (1/∆z)2

]

bi = fi = 1/(∆y)2 hi = 4πGρi,j,k (modulo BCs)
ai = gi = 1/(∆z)2
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Leads to very large sparse banded matrix:




d e f g

c · · · ·
· · · · g

· · · f

· · · ·
b · d e ·

· c d · f

· · · ·
b · · ·

a · · · ·
· · · · e

a b c d
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=⇒ even very small problem (203)→ large matrix 8000× 8000.

“Reasonable” sized problem (1003)→ 106 × 106 matrix!

Clearly need efficient ways to solve matrix:
1. Relaxation schemes — guess solution, then relax (Cf. NRiC

§19.5–19.6).
E.g., “Successive Over-Relaxation” (SOR),
“Alternating-Direction Implicit” (ADI), multi-grid (use exact
solution on coarse grid as initial guess for iterative solution
on fine grid), etc.

2. Sparse banded solvers, e.g., conjugate gradient method
(NRiC, §2.7).

3. Fourier methods — solution of FDE in Fourier space is very
simple, then can inverse Fourier transform solution back to
real space (NRiC §19.4).
Very powerful, but requires periodic BCs.
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Summary: PM Method
What is advantage of PM code?

Force solving scales as O(Ng), where Ng = number of mesh
grid points.
Leapfrog scales as O(Np), where Np = number of particles.
Work associated with leapfrog& solving Poisson’s equation.
∴ can afford very large Np, e.g., Np 106–8 with Ng ∼ 104–6.
Not good for correlated systems (in which 2-body encounters
important) but great for uncorrelated systems (where it takes
the place of softening).

N-body Techniques – p. 17/17


