N-body Techniques
 Part 3

Massimo Ricotti
ricotti@astro.umd.edu
University of Maryland

The PM Method, Continued

There are several distinct steps in PM process:

1. Assign particles to mesh to compute ρ_{i}.
2. Get boundary conditions for Φ (Φ_{0} and Φ_{N+1}).
3. Solve discretized version of Poisson's equation.
4. Compute \mathcal{F} from discretized version of force equation.

Step 1: Assigning particles to mesh

Discuss two schemes here:

1. Nearest Grid Point (NGP) scheme:

- Assign entire mass of particle to grid zone that contains it.
- E.g., discretize space into N zones in x-dimension:

Set $\rho_{i}=n_{i} m / \Delta x$, where $n_{i}=$ number of particles in cell i (equal mass).

- Leads to a very coarse distribution of ρ_{i} :

2 Cloud-In-Cell (CIC) or Particle-In-Cell (PIC):

- Assign a "shape" or "cloud" to particle.
- Assume a distribution of ρ inside this shape.
- Then distribute mass to zones according to overlap.
- E.g., assume particle has top-hat ρ distribution, width w, height $\rho_{0}=m / w$:

- Then (in 1-D), $\int_{-\infty}^{\infty} \rho(x) d x=m$. Distribute mass of particle according to overlap:

Leads to smoother ρ_{i}.

- Can adopt more complex shapes for density. E.g.,

Triangle
Gaussian
etc.
Higher-order "shapes" introduce ringing into system.

Step 2: Boundary conditions

- Given $\rho_{i}, i=1, \ldots, N$, need a boundary value for Φ, i.e., need Φ_{0} and Φ_{N+1}.
- Often can use periodic BC, i.e., $\Phi_{0}=\Phi_{N}, \Phi_{N+1}=\Phi_{1}$. Appropriate for, e.g., cosmology simulations.
- Otherwise, standard to use multipole expansion (e.g., Jackson 1975) to compute potential on boundary due to mass in each cell.
- Often, first (monopole) term is good enough:

$$
\Phi_{B}(\mathbf{r})=-\frac{G M}{\left|\mathbf{r}-\mathbf{r}_{C M}\right|}
$$

- See Binney \& Tremaine (second ed), Ch .24, Eq. 2.95 for full series (involves spherical harmonics).

Step 3: Solve Poisson's equation

Can see that discretized equation

$$
\frac{\Phi_{i-1}-2 \Phi_{i}+\Phi_{i+1}}{(\Delta x)^{2}}=4 \pi G \rho_{i}
$$

leads to tri-diagonal (tri-di) matrix:

$$
\left[\begin{array}{rrrrrr}
-2 & 1 & & & & \\
1 & -2 & 1 & & & \\
& 1 & -2 & \ddots & & \\
& & \ddots & \ddots & \ddots & \\
& & & 1 & -2 & 1 \\
& & & & 1 & -2
\end{array}\right]\left[\begin{array}{c}
\Phi_{1} \\
\Phi_{2} \\
\Phi_{3} \\
\vdots \\
\vdots \\
\Phi_{N}
\end{array}\right]=\left[\begin{array}{c}
4 \pi G \rho_{1}(\Delta x)^{2}-\Phi_{0} \\
4 \pi G \rho_{2}(\Delta x)^{2} \\
4 \pi G \rho_{3}(\Delta x)^{2} \\
\vdots \\
\vdots \pi G \rho_{N}(\Delta x)^{2}-\Phi_{N+1}
\end{array}\right]
$$

- There is an extremely efficient algorithm for solving tri-di systems.
- Write discretized system as:

$$
a_{i} \Phi_{i-1}+b_{i} \Phi_{i}+c_{i} \Phi_{i+1}=d_{i}
$$

- Then forward elimination gives (Hockney \& Eastwood, p. 185): ${ }^{a}$

$$
\begin{array}{rr}
w_{1}=\frac{c_{1}}{b_{1}} & w_{i}=\frac{c_{i}}{b_{i}-a_{i} w_{i-1}}, \\
(i=2,3, \ldots, N-1), \text { and, } & \\
g_{1}=\frac{d_{1}}{b_{1}} & g_{i}=\frac{d_{i}-a_{i} g_{i-1}}{b_{i}-a_{i} w_{i-1}} .
\end{array}
$$

${ }^{a}$ Also see tridag () (NRiC §2.4).

- Backsubstitution:

$$
\begin{aligned}
\Phi_{N} & =g_{N} \\
\Phi_{i} & =g_{i}-w_{i} \Phi_{i+1}
\end{aligned}
$$

with $i=N-1, N-2, \ldots, 1$.

- If a, b, c constant, can precompute w_{i} and $1 /\left(b_{i}-a_{i} w_{i-1}\right)$.
- If $a=1, b=-2, c=1$, only need $4 N$ operations.
- For periodic BC, even simpler method possible (Hockney \& Eastwood, p. 35).

Step 4: Force interpolation

- Once potential is given, must compute force (per unit mass) from $\mathcal{F}=-\nabla \Phi$.
- In 1-D, $\mathcal{F}=-\partial \Phi / \partial x \Rightarrow \operatorname{FDE} \mathcal{F}_{i+1 / 2}=-\left(\Phi_{i+1}-\Phi_{i}\right) / \Delta x$.
- Forces centered at cell boundaries:

- Must interpolate forces to particle positions.
- Linear interpolation simplest. For each particle, position $x_{i-1 / 2}<x<x_{i+1 / 2}$, compute:

$$
\mathcal{F}(x)=\mathcal{F}_{i-1 / 2}+\left(\frac{x-x_{i-1 / 2}}{\Delta x}\right)\left(\mathcal{F}_{i+1 / 2}-\mathcal{F}_{i-1 / 2}\right)
$$

- Higher-order interpolation used in conjunction with higher-order charge-assignment schemes.

We now have ingredients necessary for a 1-D PM code:

1. Particle assignment;
2. Boundary conditions;
3. Solve Poisson's equation;
4. Force interpolation.

Result is \mathcal{F} for every particle.

Generalizing to $3-D$

- Generalizing to 3-D is straightforward:

1. Particle assignment: use NGP; or for PIC, particle is sphere.
2. BCs: periodic, or use 3-D multipole expansion.
3. Solve Poisson's equation in 3-D (see below).
4. Interpolate \mathcal{F} in 3-D (easy).

- Poisson's equation in 3-D:

$$
\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}+\frac{\partial^{2} \Phi}{\partial z^{2}}=4 \pi G \rho
$$

- Discretize Φ in 3-D:

$$
\begin{aligned}
\Phi(x, y, z) & \rightarrow \Phi_{i, j, k} \\
\rho(x, y, z) & \rightarrow \rho_{i, j, k}
\end{aligned}
$$

- FDE becomes:

$$
\begin{array}{r}
\frac{\Phi_{i-1, j, k}-2 \Phi_{i, j, k}+\Phi_{i+1, j, k}}{(\Delta x)^{2}}+\frac{\Phi_{i, j-1, k}-2 \Phi_{i, j, k}+\Phi_{i, j+1, k}}{(\Delta y)^{2}} \\
+\quad \frac{\Phi_{i, j, k-1}-2 \Phi_{i, j, k}+\Phi_{i, j, k+1}}{(\Delta z)^{2}}=4 \pi G \rho_{i, j, k}
\end{array}
$$

- Can be written in matrix form:

$$
\begin{aligned}
a_{i} \Phi_{i, j, k-1} & +b_{i} \Phi_{i, j-1, k}+c_{i} \Phi_{i-1, j, k}+d_{i} \Phi_{i, j, k}+ \\
& +e_{i} \Phi_{i+1, j, k}+f_{i} \Phi_{i, j+1, k}+g_{i} \Phi_{i, j, k+1}=h_{i}
\end{aligned}
$$

where $i=1, \ldots, N_{x}, j=1, \ldots, N_{y}, k=1, \ldots, N_{z}$ and

$$
\begin{aligned}
c_{i} & =e_{i} & =1 /(\Delta x)^{2} & d_{i}=-2\left[(1 / \Delta x)^{2}+(1 / \Delta y)^{2}+(1 / \Delta z)^{2}\right] \\
b_{i} & =f_{i}=1 /(\Delta y)^{2} & & h_{i}=4 \pi G \rho_{i, j, k} \text { (modulo BCs) } \\
a_{i} & =g_{i}=1 /(\Delta z)^{2} & &
\end{aligned}
$$

- Leads to very large sparse banded matrix:

- Dimension is $\left(N_{x} N_{y} N_{z}\right) \times\left(N_{x} N_{y} N_{z}\right)$!
- \Longrightarrow even very small problem $\left(20^{3}\right) \rightarrow$ large matrix 8000×8000.
- "Reasonable" sized problem $\left(100^{3}\right) \rightarrow 10^{6} \times 10^{6}$ matrix!
- Clearly need efficient ways to solve matrix:

1. Relaxation schemes - guess solution, then relax (Cf. NRiC §19.5-19.6).
E.g., "Successive Over-Relaxation" (SOR),
"Alternating-Direction Implicit" (ADI), multi-grid (use exact solution on coarse grid as initial guess for iterative solution on fine grid), etc.
2. Sparse banded solvers, e.g., conjugate gradient method (NRiC, §2.7).
3. Fourier methods - solution of FDE in Fourier space is very simple, then can inverse Fourier transform solution back to real space (NRiC §19.4).

- Very powerful, but requires periodic BCs.

Summary: PM Method

- What is advantage of PM code?
- Force solving scales as $\mathcal{O}\left(N_{g}\right)$, where $N_{g}=$ number of mesh grid points.
- Leapfrog scales as $\mathcal{O}\left(N_{p}\right)$, where $N_{p}=$ number of particles.
- Work associated with leapfrog \ll solving Poisson's equation.
\therefore can afford very large N_{p}, e.g., $N_{p} 10^{6-8}$ with $N_{g} \sim 10^{4-6}$.
- Not good for correlated systems (in which 2-body encounters important) but great for uncorrelated systems (where it takes the place of softening).

