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The PM Method, Continued

There are several distinct steps in PM process:

1.
2.
3.

Assign particles to mesh to compute p;,.
Get boundary conditions for ® (®, and ® ;).

Solve discretized version of Poisson’s
equation.

. Compute F from discretized version of force

equation.



Step 1: Assigning particles to mesh

Discuss two schemes here:

1. Nearest Grid Point (NGP) scheme:
® Assign entire mass of particle to grid zone that contains it.
® E.g, discretize space into IV zones in z-dimension:

| o< v | o~ ] o< |
N | 7\ N | N | 7\ |
1—1 1 1+1
Set p;, = n;m/Ax, where n; = number of particles in cell 7

(equal mass).
® |eads to a very coarse distribution of p;:
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2 Cloud-In-Cell (CIC) or Particle-In-Cell (PIC):

N

o o @

Assign a “shape” or “cloud” to particle.
Assume a distribution of p inside this shape.
Then distribute mass to zones according to overlap.

E.g., assume particle has top-hat p distribution, width w,
height pg = m/w:

= 0O

= m/w
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® Then (in 1-D), [~ p(z) dv = m. Distribute mass of particle
according to overlap:
I I

50 o s s

Leads to smoother p;.

® Can adopt more complex shapes for density. E.g.,

Triangle
Gaussian

etc.

Higher-order “shapes” introduce ringing into system.
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Step 2: Boundary conditions

®» Givenp;,i=1,...,N, need a boundary value for ®, i.e., need &
and (I)N—H-

® Often can use periodic BC, i.e., g = &n, Py = D5
Appropriate for, e.g., cosmology simulations.

® Otherwise, standard to use multipole expansion (e.g., Jackson
1975) to compute potential on boundary due to mass in each cell.

» Often, first (monopole) term is good enough:

GM

_|r—rCM\'

Pp(r) =

# See Binney & Tremaine (second ed), Ch .24, Eq. 2.95 for full
series (involves spherical harmonics).
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Step 3: Solve Poisson’s equation

Can see that discretized equation

leads to tri-diagonal (tri-di) matrix:

Qi1 —20; + P4

(Az)?

= 47TG,07;

4nGp1(Ax)? —
471G po(Ax)?
471G p3(Ax)?

| AnGpn (Az)? — Py

oy
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® There is an extremely efficient algorithm for solving tri-di systems.
» Write discretized system as:

a;Pi—1 +b;P; +c;Piy1 = d;.

# Then forward elimination gives (Hockney & Eastwood, p.
185):2

?Also see tridag () (NRIC 32.4).
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Backsubstitution:

On = gn
O, = g —wiPiyq,

withi=N—-1,N—2 ... 1.
If a, b, ¢ constant, can precompute w; and 1/(b; — a;w;_1).
Ifa=1,b= -2, c=1, only need 4N operations.

For periodic BC, even simpler method possible (Hockney &
Eastwood, p. 35).
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Step 4: Force interpolation

® Once potential is given, must compute force (per unit mass) from
F =-Vo.

» In 1'D, F = —8(1)/837 = FDE Fi—i—l/Z = —((I)Z'+1 — (I)Z)/A.CU
#® Forces centered at cell boundaries:

E I3

1—1/2 1+1/2
RV RV RV
A A A

) ()] D
1—1 1 1+1

® Must interpolate forces to particle positions.
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® Linear interpolation simplest. For each particle, position
T;_1/2 <X < Tijy1/2, COMpPuUtE:

r — X;—
F(Qf) = Jri—l/Q + ( Ar 1/2) (‘Fi—l—l/Q - Fi—1/2) .

® Higher-order interpolation used in conjunction with higher-order
charge-assignment schemes.

We now have ingredients necessary for a 1-D PM code:

1. Particle assignment;
Boundary conditions;

Solve Poisson’s equation;

> W D

Force interpolation.
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Generalizing to 3-D

® Generalizing to 3-D is straightforward:
1. Particle assignment: use NGP; or for PIC, particle is sphere.

2. BCs: periodic, or use 3-D multipole expansion.
3. Solve Poisson’s equation in 3-D (see below).
4. Interpolate F in 3-D (easy).

®» Poisson’s equation in 3-D:

?’®  9°Pd  9*®

=4 :
Ox? i 0y? i 022 mGp
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® Discretize ¢ in 3-D:

®<x7 y? Z) % ¢7:7j7k7
,O(ZC,y, Z) — Pi,j,k-

®» FDE becomes:

Qi1 — 29 5k +Pit1 ik L D1k — 2V 55+ Pi i1k
(Ax)? (Ay)?

D; i1 —29; 51+ Pi k1
(Az)?

_|_

= 47TG,OZ',j,k.
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» Can be written in matrix form:

a;i®; k-1 + 0Pkt ci®Piii ik +di® e+
+  €iPit1 kT fi®ij+1k + 9iPigk+1 = M,

wherei=1,...,. N, j=1,...N,, k=1,..,N, and

c;i =e; = 1/(Ax)? d; = =2 [(1/Az)* + (1/Ay)* + (1/Az)?]
b; = fz = 1/(Ay)2 h;, = 47TGpZ',j,k; (mOdU|O BCS)
a; = g; — 1/(AZ)2
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® [eads to very large sparse banded matrix:

_de f g ]
C
g
/
b d e
c d f
b
a
a b c d

# Dimensionis (N,N,N.) x (Ny;N,N,)!
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® — even very small problem (203) — large matrix 8000 x 8000.
® “Reasonable” sized problem (1003) — 10° x 10° matrix!

® C(Clearly need efficient ways to solve matrix:

1. Relaxation schemes — guess solution, then relax (Cf. NRiC
§19.5-19.6).

E.g., “Successive Over-Relaxation” (SOR),
“Alternating-Direction Implicit” (ADI), multi-grid (use exact
solution on coarse grid as initial guess for iterative solution
on fine grid), etc.

2. Sparse banded solvers, e.g., conjugate gradient method
(NRIC, §2.7).

3. Fourier methods — solution of FDE in Fourier space is very
simple, then can inverse Fourier transform solution back to
real space (NRIC §19.4).

» \ery powerful, but requires periodic BCs.
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Summary: PM Method

®» What is advantage of PM code?

» Force solving scales as O(N,), where N, = number of mesh
grid points.

» Leapfrog scales as O(N, ), where N,, = number of particles.

» Work associated with leapfrog < solving Poisson’s equation.

. can afford very large N, e.g., N, 10°7® with N, ~ 10*7°.

» Not good for correlated systems (in which 2-body encounters
important) but great for uncorrelated systems (where it takes
the place of softening).
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