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Upwind differencing
In addition to amplitude errors (instability or damping), scheme
may also have phase errors (dispersion) or transport errors
(spurious transport of information).

Upwind differencing helps reduce transport errors:
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where here we’ve supposed that v is not constant, for illustration.
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Schematically, only use information upwind of grid point j to
construct differences:
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Upwind difference is only first order in space. Still, it has lower
transport error than second-order centered difference. Better?
Can construct higher-order upwind difference schemes...
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Second-order accuracy in time
We have been dealing with two derivatives, ∂/∂x and ∂/∂t. We
have constructed higher-order schemes in space. What about t?

Staggered leapfrog is 2nd-order in time:
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But, subject to a mesh-drift instability. Think of space-time
discretization:

Odd-integer n coupled to even-integer j,

Even-integer n coupled to odd-integer j

(“red-black” ordering; odd and even mesh points decoupled).
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Schematically,

j−1 j+1 j+2j−2

t

+1

+2

j

n

n

n

n −1

x

Can be fixed by adding diffusion to couple grid points (add
ǫ(Fn

j−1 − 2Fn
j + Fn
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Two-step Lax-Wendroff: another 2nd-order scheme.

1. Use Lax step to estimate fluxes at n + 1
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2. Using these half-step values of u, calculate
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3. Then use leapfrog to get updated values:
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Schematically,
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Fixes dissipation and mesh drifting but introduces phase error
(dispersion). Often first-order upwind scheme is as good as/better
than 2nd-order L-W.
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Summary: Hyperbolic methods
Many IVPs can be cast in flux-conservative form.

Solving methods:

1. FTCS — unconditionally unstable. Never use.

2. Lax — equivalent to adding diffusion, damps small scales.

3. Upwind differencing — reduces transport errors, but only
1st-order in space.

4. Staggered leapfrog — 2nd-order in time, but subject to
mesh-drift instability. Fix with diffusion.

5. Two-step Lax-Wendroff — 2nd-order in time, but suffers from
phase error.

NRiC recommends staggered leapfrog (presumably with
diffusion), particularly for problems related to the wave equation.

For problems sensitive to transport errors, NRiC recommends
upwind differencing schemes. Partial Differential Equations – p.8/15



Solving Parabolic PDEs
(Diffusive IVPs)

NRiC §19.2.

Prototypical parabolic PDE is diffusion equation:
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,

where we have taken D > 0 to be constant (D = 0 is trivial and
D < 0 leads to physically unstable solutions).

Consider FTCS differencing:
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von Neumann analysis gives
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This is stable provided
2D∆t

(∆x)2
≤ 1.

The 2nd derivative makes all the difference (we saw adding
diffusion via the Lax method stabilizes FTCS for the hyperbolic
equation).

Diffusion time over scale L is τD ∼ L2/D. So stability criterion
says ∆t . τD/2 across one cell.

Often interested in evolution of time scales ≫ τD of one cell. How
can we build stable scheme for larger ∆t?
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Implicit differencing
Evaluate RHS of difference equation at n + 1:
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To solve this, rewrite as:
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where α ≡ D∆t/(∆x)2.

In 1-D, this is a tri-di matrix.

In 3-D, get large, sparse, banded matrix.

Solve the usual way.
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What is limit of (1) as ∆t → ∞ (α → ∞)? Divide through by α to
find FD form of ∂2u/∂x2 = 0, i.e., static solution.

Fully implicit scheme is unconditionally stable and gives correct
equilibrium structure, but cannot be used to follow small-timescale
phenomena.
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Crank-Nicholson differencing
Form average of explicit and implicit schemes (in space):
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Unconditionally stable, 2nd-order accurate in time (both sides
centered at n + 1/2).
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Schematically,
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Explicit (FTCS) Fully Implicit Crank−Nicholson

(1st−order stable for small dt) (1st−order stable for all dt) (2nd−order stable for all dt)

“Freezes” small-scale phenomena. Can use fully implicit scheme at end

to drive fluctuations to equilibrium.

Partial Differential Equations – p.14/15



Nonlinear diffusion problems
For nonlinear diffusion problems, e.g., where
D = D(x), then implicit differencing more
complex.

Must linearize system and use iterative
methods.
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