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Schemes Based on Flux-conservative
Form

By their very nature, the fluid equations (1)–(3) can be written in
flux-conservative form. In 1-D, with no external forces,

∂u

∂t
+

∂

∂x
F(u) = 0,

where
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




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(E.F.T.S.). Recall e ≡ ρ(ε + 1

2
v2) = energy density.
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When written in this form, it is clear that the techniques described
before can be applied immediately (given an equation of state for
p).

E.g., two-step Lax-Wendroff:

un+1
j = un

j −
∆t

∆x

(

F
n+1/2

j+1/2
− F

n+1/2

j−1/2

)

,

where

F
n+1/2

j±1/2
= F (u

n+1/2

j±1/2
),

etc.

Note that all components of u must be at same location on mesh
=⇒ staggered mesh not needed (compare with operator split
method, below).

Scheme is stable provided (|v| + c)∆t/∆x < 1, where c2 = γp/ρ

(c = sound speed).
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Operator Split Schemes
Simplest schemes, developed long ago by von Neumann,
Richtmeyer, etc.

The fluid equations (1)–(3) can be written as “sum” of two steps.
In 1-D:

A

∂ρ/∂t + v ∂ρ/∂x = 0

∂(ρv)/∂t + v ∂(ρv)/∂x = 0

∂e/∂t + v ∂e/∂x = 0

B

∂ρ/∂t = 0

ρ ∂v/∂t = −∂p/∂x

∂e/∂t = −p ∂v/∂x
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Equations in A are all the form of scalar advection equations.
Adopt high-order upwind schemes to solve A =⇒ advection step
(transport).

Equations in B are all source terms in the equations that can be
differenced directly =⇒ source step.

Best to adopt staggered mesh with v at cell edges, p, ρ, e at cell
centers.

vi vi vi

pi p
+1i

+1/2 +3/2−1/2

(In multi-D, v defined at cell faces—naturally describes flux of fluid
into/out of cell.)
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Leads to 2nd-order accurate FDEs for the source terms. I.e.,

vn+1

i−1/2
= vn

i−1/2 −
∆t(pi − pi−1)

1

2
(ρi + ρi−1)∆x

,

en+1
i = en

i −
∆t(vi+1/2 − vi−1/2)pi

∆x
.

Operator split schemes are simple, easy to code, and easy to
extend with more complex physics, e.g., MHD, radiation, etc.

But, they don’t treat regions with sharp p gradients as well as
more modern schemes (e.g., Godunov).

Fluid Dynamics – p.6/17



Smoothed Particle Hydrodynamics
So far we have only considered methods that require dividing
space into a grid. Can we represent the local fluid density without
a grid?

Advantage: not confined to a specific geometry, more
adaptable.

Strategy (cf. Monaghan 1992, ARAA 30, 543):

Represent fluid by large number (∼ 104–6) of “particles.”

Each particle has a mass, Lagrangian position and velocity,
internal energy, and possibly an initial density.

Other quantities derived by smoothing over an “interpolating
kernel” W (units: 1/volume). In this way the statistical
properties of the real fluid elements are treated in an average
sense.

Solve fluid equations in comoving frame with these smoothed
quantities using any familiar method (leapfrog, RK, etc.) Fluid Dynamics – p.7/17



The interpolating kernel
If f is some quantity (e.g., density), then its kernel estimate (per
unit volume) 〈f〉 is given by

〈f(r)〉 =

∫

f(r′)W (r − r
′; h) dr′,

where the integral is over all space,

∫

W (r − r
′; h) dr′ = 1,

and

lim
h→0

W (r− r
′; h) = δ(r− r

′).

(h is called the “smoothing length” and is typically chosen so that
N ' 15 particles lie within h of any particle. The error for using
this approximation goes as ∼ O(h2).)
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For numerical work, split the fluid into small volume elements ∆τ

of mass ρ∆τ , where ρ is a representative density for the small
fluid element. The integral can then be approximated by

〈f(r)〉 =
∑

j

mj
f(rj)

ρ(rj)
W (r− rj ; h).

(Note mj/ρj takes the place of
∫

dr′.)

The interpolating kernel can be any analytically differentiable
function that satisfies the normalization and limiting properties
above. E.g.,

3-D Gaussian kernel:

W (r; h) =
1

(πh2)3/2
e−r2/h2

.
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3-D spline kernel:

W (r; h) =
1

πh3















1 − 3

2
s2 + 3

4
s3 , 0 ≤ s < 1

1

4
(2 − s)3 , 1 ≤ s < 2

0 , s ≥ 2

,

where s ≡ r/h.
In practice, choose W so that it falls off rapidly for |r − rj | ≥ h,
hence only need to sum over nearest neighbours.
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Note the kernel estimate of the gradient of f(r) is just

〈∇f(r)〉 =
∑

j

mj
f(rj)

ρ(rj)
∇W (r− rj ; h)

(since the ∇ operator is taken with respect to the space
coordinates r and W is the only quantity that depends on r).
However, it is often better to use the identity ρ∇f = ∇(ρf) − f∇ρ

to give a

〈ρi∇fi〉 =
∑

j

mj(fj − fi)∇iWij ,

where ∇iWij is the gradient of W (ri − rj ; h) w.r.t. the coordinates
of particle i.

aBecause 〈∇i(ρifi)〉 =
∑

j mjfj∇iWij and fi〈∇iρi〉 =
∑

j mjfi∇iWij .
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The equations of fluid dynamics, SPH
version

Recall the continuity equation

Dρ

Dt
= −ρ∇·v,

where the derivative is taken in the fluid frame.

The SPH equivalent would be

Dρi

Dt
=
∑

j

mjvij·∇iWij ,

where vij ≡ vi − vj (we used that vector identity again, replacing
the gradient with the divergence).
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But we could estimate the density everywhere directly by

〈ρ(r)〉 =
∑

j

mjW (r− rj ; h).

This means we don’t really need to solve the continuity equation
(except in practice it turns out it is better to solve the equation for
technical reasons; see Monaghan 1992).

The momentum equation without external forces

Dv

Dt
= −

1

ρ
∇p

becomes
Dvi

Dt
= −

∑

j

mj

(

pj

ρ2
j

+
pi

ρ2
i

)

∇iWij ,
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where the pressure gradient has been symmetrized by

∇p

ρ
= ∇

(

p

ρ

)

+
p

ρ2
∇ρ

in order to ensure conservation of linear and angular momentum
(the momentum equation becomes a central force law between
particles i and j, assuming W is Gaussian).
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Finally, the energy equation

Dε

Dt
= −

p

ρ
(∇·v)

becomes

Dε

dt
=

1

2

∑

j

mj

(

pj

ρ2
j

+
pi

ρ2
i

)

vij·∇iWij ,

where the factor of 1/2 comes from symmetrization (it is a
characteristic of SPH that gradient terms can be written in many
different ways, just as there are a variety of FDE representations).
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Particles are moved using

Dri

Dt
= vi,

or, to ensure particles move with a velocity similar to the average
velocity in their neighbourhood,

Dri

Dt
= vi + ε

∑

j

mj

(

vji

ρ̄ij

)

Wij ,

where ρ̄ij ≡ (ρi +ρj)/2 and 0 ≤ ε ≤ 1 is a constant (the “X” factor).

As usual, also need an equation of state.

Can add other forces, i.e., viscosity, magnetic fields, etc.

Can implement adaptive smoothing lengths.
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Summary
SPH is based on microscopic picture of real fluid. But real fluid
has many more particles than can be followed on a computer, so
“smoothing” is used.

Advantage of scheme is that it is adaptive—particles go where
density is high. Good for following dynamics where gravity
dominates because of its N -body-like foundation.

Disadvantage of scheme is that it does not resolve low-density
regions well, it does not handle regions with strong p gradients
well (shocks), and it is expensive (need a way to find nearest
neighbours =⇒ tree code!).

Finite differencing methods are attractive because mathematical
properties of FDEs well studied, and can prove/analyze stability,
convergence rate, etc. of various schemes.
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