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Schemes Based on Flux-conserve
Form

®» By their very nature, the fluid equations (1)—(3) can be written in
flux-conservative form. In 1-D, with no external forces,

(((?;; i ng(u) =0
where
p pv
u= | pv Flu)=| p?+p
e (e +p)v

(E.ET.S.). Recall e = p(e + 2v?) = energy density.
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» When written in this form, it is clear that the techniques described
before can be applied immediately (given an equation of state for

p)-
®» E.g., two-step Lax-Wendroff:

At
ntl _ n n+1/2 n+1/2
Ui =Y T A, (Fj+1/2 — L 1) ) )
where
n+1/2 n+1/2
Figijs = F<ujj:1/2)’
etc.

®» Note that all components of u must be at same location on mesh
—> staggered mesh not needed (compare with operator split
method, below).

® Scheme is stable provided (|v| + ¢)At/Az < 1, where ¢ = vyp/p
(c = sound speed).
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Operator Split Schemes

» Simplest schemes, developed long ago by von Neumann,
Richtmeyer, etc.

®» The fluid equations (1)—(3) can be written as “sum” of two steps.
In 1-D:
A
Op/0t +v0p/0x =0
d(pv) /0t + v O(pv)/dx =0

Oe/0t +vde/0x =0

B
dp/0t =0
pOv/0t = —0p/0x

Ode/0t = —pOv/0x
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$» Equations in A are all the form of scalar advection equations.
Adopt high-order upwind schemes to solve A = advection step
(transport).

$» Equations in B are all source terms in the equations that can be
differenced directly =—- source step.

®» Best to adopt staggered mesh with v at cell edges, p, p, e at cell
centers.

Pj Pi.1
| | | | |
| | |
Vi_1/2 Vie1/2 Y

(In multi-D, v defined at cell faces—naturally describes flux of fluid
Into/out of cell.)
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® Leads to 2"4-order accurate FDEs for the source terms. l.e.,

oL At(pi — pi—1)
i=1/2 =1/ ~(pi + pi—1)Ax
ntl _  on A75(717;+1/2 - Ui—1/2)pz’
€; = e Ao :

Operator split schemes are simple, easy to code, and easy to
extend with more complex physics, e.g., MHD, radiation, etc.

But, they don’t treat regions with sharp p gradients as well as
more modern schemes (e.g., Godunov).
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Smoothed Particle Hydrodynamics

®» So far we have only considered methods that require dividing
space into a grid. Can we represent the local fluid density without
a grid?
# Advantage: not confined to a specific geometry, more
adaptable.

®» Strategy (cf. Monaghan 1992, ARAA 30, 543):
» Represent fluid by large number (~ 104_6) of “particles.”

# Each particle has a mass, Lagrangian position and velocity,
Internal energy, and possibly an initial density.

# Other quantities derived by smoothing over an “interpolating
kernel” W (units: 1/volume). In this way the statistical
properties of the real fluid elements are treated in an average
sense.

# Solve fluid equations in comoving frame with these smoothed
quantities using any familiar method (leapfrog, RK, etc.) ™™™ ™



The Interpolating kernel

®» |If f is some quantity (e.g., density), then its kernel estimate (per
unit volume) (f) is given by

/f (r —1'; h)dr’,

where the integral is over all space,
/W(r —r1';h)dr’ =

o _ o
}lllil%W(r r';h) =6(r —r').

and

(h i1s called the “smoothing length” and is typically chosen so that
N ~ 15 particles lie within h of any particle. The error for using
this approximation goes as ~ O(h?).)
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$» For numerical work, split the fluid into small volume elements A+
of mass pAr, where p Is a representative density for the small
fluid element. The integral can then be approximated by

F) i v
pley) TR

(F@) = > m,

(Note m,;/p, takes the place of [ dr’.)

®» The interpolating kernel can be any analytically differentiable
function that satisfies the normalization and limiting properties
above. E.g.,

3-D Gaussian kernel:
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>

3-D spline kernel:

(1—%824—%83 L, 0<s<1
1
W(I',h)zﬁ %(2—8)3 ,1§8<2 )
L 0 , 8> 2

where s = r/h.

In practice, choose W so that it falls off rapidly for |r —r;| > A,
hence only need to sum over nearest neighbours.

Fluid Dynamics — p.10/1



® Note the kernel estimate of the gradient of f(r) is just
f(r;)
r)) = g m; —=VW(r—r;;h)
)> ; ]p(rj) J

(since the V operator is taken with respect to the space
coordinates r and W is the only quantity that depends on r).
However, it is often better to use the identity pVf = V(pf) — fVp
to give

(PiV [i) ng fi)ViWij,

where V,;W,; is the gradient of W (r; —r;; h) w.r.t. the coordinates
of particle .

“Because (Vi(pifi)) = 2_,m;f;ViWi; and [fi(Vip;) =
ijjfiViWij-
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The equations of fluid dynamics, S
version

® Recall the continuity equation

where the derivative is taken in the fluid frame.

®» The SPH equivalent would be

Dp;
D Z m;v;jV;Wij,
J

where v;; = v; — v; (we used that vector identity again, replacing
the gradient with the divergence).
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$» But we could estimate the density everywhere directly by
= ijW(r — 13 h).
j

This means we don’t really need to solve the continuity equation
(except in practice it turns out it is better to solve the equation for
technical reasons; see Monaghan 1992).

$» The momentum equation without external forces

becomes

D i i
V; L _Zm] <p7 p2> Vz'Wija
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® where the pressure gradient has been symmetrized by
Vv
Vv (2)+ L
p p p

In order to ensure conservation of linear and angular momentum
(the momentum equation becomes a central force law between
particles » and 5, assuming W is Gaussian).
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» Finally, the energy equation

_ _Pio.
e = p(V V)

becomes

ij (pj Z>V’LJVWZJ7
I

where the factor of 1/2 comes from symmetrization (it is a
characteristic of SPH that gradient terms can be written in many
different ways, just as there are a variety of FDE representations).
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o o @

Particles are moved using

or, to ensure particles move with a velocity similar to the average
velocity in their neighbourhood,

DI',L' Vii
pr = Vite2m (_j> Wi
J

where p;; = (p;+p;)/2 and 0 < e < 1 is a constant (the “X” factor).

As usual, also need an equation of state.
Can add other forces, i.e., viscosity, magnetic fields, etc.

Can implement adaptive smoothing lengths.
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Summary

®» SPH is based on microscopic picture of real fluid. But real fluid
has many more particles than can be followed on a computer, so
“smoothing” is used.

®» Advantage of scheme is that it is adaptive—particles go where
density is high. Good for following dynamics where gravity
dominates because of its N-body-like foundation.

®» Disadvantage of scheme is that it does not resolve low-density
regions well, it does not handle regions with strong p gradients
well (shocks), and it is expensive (need a way to find nearest
neighbours — tree code!).

® Finite differencing methods are attractive because mathematical
properties of FDEs well studied, and can prove/analyze stability,
convergence rate, etc. of various schemes.
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