ASTR615 Fall 2015

Problem Set \#3

Due Oct 21, 2015

Topics for this problem set include round-off error and linear algebra.

1. As an example of an unstable algorithm, consider integer powers of the "Golden Mean" $\phi=(\sqrt{5}-1) / 2$. It can be shown that $\phi^{n+1}=\phi^{n-1}-\phi^{n}$, i.e. successively higher powers of ϕ can be computed from a single subtraction rather than a more expensive multiply. Write a single-precision program to compute a table consisting of the columns n, ϕ^{n} computed from the recursion relation, and ϕ^{n} computed directly (i.e. $\phi^{n}=\phi \phi^{n-1}$), for n ranging from 1 to 20 . Is the round-off error random? What happens in double precision?
2. Write a program to compute the instantaneous spin period of a rigid body made up of identical, discrete, point particles. Use the fact that the angular momentum is

$$
\begin{equation*}
\mathbf{L}=\sum_{i} m_{i}\left(\mathbf{r}_{i} \times \mathbf{v}_{i}\right)=\mathbf{I} \boldsymbol{\omega} \tag{1}
\end{equation*}
$$

where m_{i} is the mass of particle i, \mathbf{r}_{i} and \mathbf{v}_{i} are its position and velocity vectors with respect to the centre of mass, $\boldsymbol{\omega}$ is the spin vector, and \mathbf{I} is the inertia tensor

$$
\mathbf{I}=\sum_{i} m_{i}\left(r_{i}^{2} \mathbf{1}-\mathbf{r}_{i} \mathbf{r}_{i}\right),
$$

where $\mathbf{1}$ is the unit matrix. 1 Write a program to solve Eq. (1) for $\boldsymbol{\omega}$ (feel free to use the routines in Numerical Recipes). The spin period is then $2 \pi /|\boldsymbol{\omega}|$.
(a) Test your code by reading the data file
http://www.astro.umd.edu/~ricotti/NEWWEB/teaching/ASTR415/ps2.dat
which is in the format $x y z v_{x} v_{y} v_{z}$ (i.e. 6 values to a line separated by white space). The units are mks (SI). What is the spin period in hours?
(b) Make a graphical representation of the body using your favorite graphing package. If you use 2-D projections, be sure to include enough viewing angles to get a complete picture.

[^0]
[^0]: ${ }^{1}$ For continuous bodies the summations are replaced by volume integrations and the particle masses become a mass density. In the present case the m_{i} 's can be omitted entirely since the particles are identical. The expression $\mathbf{r}_{i} \mathbf{r}_{i}$ is dyadic product of the 3 dimensional vectors \mathbf{r}_{i}, producing a 3 x 3 tensor \mathbf{T} with elements $T_{l m}=r_{l} r_{m}$, where $l, m=1,2,3$ span over the x, y, z components of the vector \mathbf{r}_{i}.

