## Due Oct 21, 2015

Topics for this problem set include round-off error and linear algebra.

- 1. As an example of an unstable algorithm, consider integer powers of the "Golden Mean"  $\phi = (\sqrt{5}-1)/2$ . It can be shown that  $\phi^{n+1} = \phi^{n-1} \phi^n$ , i.e. successively higher powers of  $\phi$  can be computed from a single subtraction rather than a more expensive multiply. Write a single-precision program to compute a table consisting of the columns n,  $\phi^n$  computed from the recursion relation, and  $\phi^n$  computed directly (i.e.  $\phi^n = \phi \phi^{n-1}$ ), for n ranging from 1 to 20. Is the round-off error random? What happens in double precision?
- 2. Write a program to compute the instantaneous spin period of a rigid body made up of identical, discrete, point particles. Use the fact that the angular momentum is

$$\mathbf{L} = \sum_{i} m_i(\mathbf{r}_i \times \mathbf{v}_i) = \mathbf{I}\boldsymbol{\omega},\tag{1}$$

where  $m_i$  is the mass of particle *i*,  $\mathbf{r}_i$  and  $\mathbf{v}_i$  are its position and velocity vectors with respect to the centre of mass,  $\boldsymbol{\omega}$  is the spin vector, and  $\mathbf{I}$  is the inertia tensor

$$\mathbf{I} = \sum_{i} m_i (r_i^2 \mathbf{1} - \mathbf{r}_i \mathbf{r}_i),$$

where **1** is the unit matrix.<sup>1</sup> Write a program to solve Eq. (1) for  $\boldsymbol{\omega}$  (feel free to use the routines in *Numerical Recipes*). The spin period is then  $2\pi/|\boldsymbol{\omega}|$ .

(a) Test your code by reading the data file

which is in the format  $x \ y \ z \ v_x \ v_y \ v_z$  (i.e. 6 values to a line separated by white space). The units are mks (SI). What is the spin period in hours?

(b) Make a graphical representation of the body using your favorite graphing package. If you use 2-D projections, be sure to include enough viewing angles to get a complete picture.

<sup>&</sup>lt;sup>1</sup>For continuous bodies the summations are replaced by volume integrations and the particle masses become a mass density. In the present case the  $m_i$ 's can be omitted entirely since the particles are identical. The expression  $\mathbf{r}_i \mathbf{r}_i$  is dyadic product of the 3 dimensional vectors  $\mathbf{r}_i$ , producing a 3x3 tensor  $\mathbf{T}$  with elements  $T_{lm} = r_l r_m$ , where l, m = 1, 2, 3 span over the x, y, z components of the vector  $\mathbf{r}_i$ .