
Gravitational Waves from Inflation

Sergey Kurennoy

UMCP Astronomy 688R project

16 May, 2008

1 What are gravitational waves?

Gravitational waves (GW) are tensor perturbations of the metric of curved
spacetime that propagate. The metric g is a matrix (or differential 2-form, to
be specific) that fully describes the 4-dimensional manifold of a spacetime in
general relativity. The components of the full metric gµν are the sum of an
unperturbed metric and the perturbation hµν , which varies on a smaller scale
(separated in Fourier transform) than the unperturbed metric, poetically like
ripples moving on a pond surface. For example, on a sufficiently local scale
or away from massive bodies, spacetime is not significantly curved, and the
spacetime is described by the flat or Minkowski metric ηµν = diag(−1, 1, 1, 1) of
special relativity. In the linearized gravity approximation, a small perturbation
to flat spacetime can be considered, by taking the metric:

gµν = ηµν + hµν , where |hµν | ≪ 1. (1)

The Einstein equation of general relativ6ity is necessary to find the equation
governing the evolution of the tensor perturbation h in flat space:

Rµν −
1

2
gµνR =

8πG

c4
Tµν . (2)

Here, Rµν (Ricci tensor) and R (Ricci scalar) are contractions of the Riemann
curvature tensor, which is a function of the metric g, while Tµν is the stress-
energy tensor, which describes the physical characteristics of massive sources of
spacetime curvature. If terms quadratic in h are ignored (since h itself is small)
and the Lorentz gauge condition ∂ν h̄µν is chosen (by close analogy to solutions
of the Maxwell equation that describe electromagnetic waves), then the Einstein
equation becomes

∂α∂
αh̄µν = −16πG

c4
Tµν , (3)

where h̄µν ≡ hµν − 1/2 ηµνh
α
α is defined. Since ∂α∂

α = −c−2∂2
t + ∇2, this is a

wave equation with a source, and suggests that the gravitational waves move at
the speed of light c. There were 10 parts in the Einstein equation (4x4 symmetric
matrices), minus 4 constraints in the gauge condition, and minus 4 superfluous
coordinate degres of freedom, which can be eliminated by imposing that h be
traceless, hαα = 0 (so that h̄µν = hµν) and transverse, h0i = 0. This leaves 2
actual degrees of freedom, which are manifested in two independent GW polar-
izations, called plus(+) and cross(×), in the so-called transverse-traceless(TT)
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gauge. So, for instance, the spacetime solution in a vacuum (Tµν = 0) is a plane
wave in the TT gauge:

ds2 = −c2dt2 + (1 + h+e
iω(t− z

c
))dx2 + h×e

iω(t− z
c
)dxdy (4)

+ (1 − h+e
iω(t− z

c
))dy2 + dz2,

where h+ and h× are real amplitudes.
But what are the physical properties of GW, and how are the produced?

Since the gravitons, or carriers of the gravitational force, are spin-2 bosons, the
GW are quadrupolar (multipole ℓ = 2) or “tensor” waves; whereas electromag-
netic waves are dipolar (ℓ = 1) or ”“vector” waves since photons are spin-1
bosons, while acoustic or sound waves for example are “scalar”. This means
that gravitational waves periodically deform space perpendicular to propaga-
tion direction, so that one transverse direction is squeezed as the orthogonal
transverse direction is stretched, as suggested by the solution metric above.
The amplitudes hij of the GW are dimensionless and a measure of the stress or
strain in a particular direction, meaning ratio of change in length ∆L to that
length L in a particular direction. In practice, h should be extremely small, has
never been measured directly, and is expected to be h ∼ 10−20 for the strongest
astrophysically imaginable source. GW cannot be observed ”locally” in a small
laboratory, because of the general relativistic property that spacetime appears
locally flat for a single observer, and this is why detectors like LIGO or LISA
have to observe variations in length on kilometer scales.

The physical reason for the quadrupole nature of GW is just energy-momentum
conservation: monopole modes cannot exist by mass-energy conservation (ṁ ∼
Ṁ = 0), and dipole modes cannot exist by linear and angular momentum con-
servation (d̈ ∼ Ṗ = 0 and µ̈ ∼ J̇ = 0). Then, a source of GW must be a system
with accelerating masses such that the mass-quadrupole moment Iij is changing

in time (Ï 6= 0). In fact, the (retarded) solution to the wave equation for h̄µν
becomes approximately proportional to the second time derivative of the mass-
quadrupole moment sufficiently far (at distance r → ∞) from a non-relativistic
source:

hµν(t, ~x) =
4G

c4

∫

dV ′Tµν(t− |~x− ~x′|/c, ~x′)
|~x− ~x′| → 2

r

G

c4
Ïµν(t− r/c), (5)

where Iij(t) ≡
∫

dV ρ(t, ~x)(xixj −
1

3
δijr

2) or zero if i = 0 or j = 0, (6)

with ρ specifying the mass-density of the source.

2 Sources of gravitational waves

The strongest GW signals are expected to come from coalescing binaries of
compact objects - typically black holes or neutron stars. Their frequency ranges
from about 10 Hz to about 1000 Hz, scales as the square root of the total
mass, and will eventually be detectable by Earth-based interferometric detectors
such as advanced LIGO. Indirect observation of gravitational radiation was first
observed by Hulse and Taylor in PSR B1913+16, a binary system of a pulsar
and a black hole, where the orbital frequency was measured to evolve over
many years in a way consistent with the predicted rate of energy loss via GW
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radiation. Other astrophysical sources include asymmetric pulsars, which should
have a periodic signal, and supernovae and other transient or burst sources.
Astrophysical sources are all localized (nearly from one point) and “modern” in
that they are mostly produced later in cosmological history.

We will henceforth consider “cosmological” sources, which emit a stochastic
(or noise-like) background of primordial or relic gravitational radiation, pro-
duced early in cosmological history, much like the cosmic microwave radiation.
These are ”random” and not point sources, because universal expansion causes
primordial radiation to appear as originating in large patches of the sky (again
like CMB). The earliest GW signals are expected to originate about 10−22 sec-
onds after the Big Bang, during inflation, when gravitons decouple at grand
unified theory (GUT) energy scales. Because gravitational radiation does not
scatter significally and interacts relatively weakly with matter in the universe,
GW signals are expected to carry information from earlier in cosmological his-
tory than CMB signals (at recombination). There are many theories that hy-
pothesize the mechanisms of production of primordial GW, and of these the
most prevalent are production by inflation and by primordial phase transitions.

One theory (Kosowsky and Kamionkowski, 1992) of primordial GW genera-
tion involves a first-order phase transition in the early universe, where bubbles
of a new, low energy density phase form within a medium consisting of the
old, higher energy density phase. The latent energy released during the transi-
tion contributes to the kinetic energy of the bubble walls as the bubbles expand.
The bubble walls collide with one another at relativistic speeds and emit gravita-
tional radiation. The GW spectrum should be peaked at a frequency of roughly
10−2Hz (as observed today, and in LISA’s range) characteristic of the cosmologi-
cal time at which this phase transition occured. Another theory (Vilenkin, 1985)
involves a second-order phase transition where 1-dimensional defects termed cos-
mic strings (like vortex lines in the superfluid He transition), which have a mass
per unit length λ ∼ 1022g/cm (GUT scale, where EGUT ∼ 1016GeV ). These
cosmic strings are formed in loops which have a tension T ∼ λc2, oscillate and
collapse in a time τ ∼ RH/c, and then decay slowly and quasi-periodically after
breaking, as they would be stable if not for GW emission. This hypothesized
process has the strongest predicted GW power spectrum ΩGW (f), which may
even be detectable by advanced LIGO. Of course, these processes, among many
others, are pretty speculative and meant to be illustrative rather than serious.
A power spectrum vs frequency plot appears in Allen’s review [2].

The emission of GW during inflation is typically simpler, better under-
stood, and more accepted as a background gravitational radiation theory than
the aforementioned phase transition processes. The predicted power spectrum
ΩGW (f)h2 (where h is the Hubble constant factor) assuming slow-roll inflation
is approximately constant with frequency (for a wide range, from about 104 Hz
to 10−12 Hz), like white noise, and the amplitude upper bound is about 10−14.
Basically, during the exponentially rapid expansion (a ∼ eHt, like a deSitter
universe, where H is constant) in inflation, perturbations arise in post-inflation
cosmology from an adiabatically amplified initial, minimal “zero-point” quan-
tum fluctuation (due to uncertainty principle) about the vacuum or ground
state. This process is essentially related to the lack of a unique vacuum state
in curved spacetime quantum field theory, where vacuum states shift during
inflation and are related by Bogoliubov transformations (?). Thus, vacuum
fluctuations during inflation generate an adiabatic density (scalar) perturbation
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as well as GW (tensor perturbation). Conceptually, during inflation, matter-
energy moves apart due to expansion and thus emits GW, and this contributes
to large-scale anisotropy of the CMB.

3 Inflation models with slow-roll approximation

Consider a field theory in flat spacetime with a single scalar field φ(xα), called
the inflaton field. Take a Lagrangian density (c = 1, h̄ = 1 units),

L =
1

2
φ̇2 − 1

2
∇φ · ∇φ− V (φ) = −1

2
ηµν∂µφ∂νφ− V (φ) = (7)

= −1

2
∂νφ∂νφ− V (φ) , with potential V (φ) =

1

2
m2φ2 +

1

2
λφ4 + . . . . (8)

Minimizing the resulting action S over arbitrary variations δφ which vanish at
the integration boundary (or ”infinity”) gives the field equation:

δS =
∫

dt
∫

d3xδL =
∫

d4x
[

∂L
∂φ − ∂µ

∂L
∂(∂µ)

]

δφ = 0 (9)

⇒ −∂ν∂νφ+ dV
dφ = φ̈−∇2φ+ V ′(φ) = 0. (10)

Without non-linear interaction terms in the potential (λ = 0), we get V ′(φ) =
m2φ, and in this case the field equation is just the Klein-Gordon equation for
a free particle with mass m. Next, for a universe that is expanding in curved
spacetime, with Hubble constant H ≡ ȧ/a, this field equation gets an addi-
tional term, +3Hφ̇, and the Laplacian gets a factor a−2. Consider the spatial
perturbation to the scalar field and its Fourier components, defined by

φ(xµ) ≡ φ0(t) + δφ(t, ~x) ≡ φ0(t) +
∑

~k δφ~k(t)e
i~k·~x . Then (11)

¨(δφ~k) + 3H ˙(δφ~k) + (k/a)2(δφ~k) +m2(δφ~k) + o[(δφ~k)
3] = 0, (12)

is the field equation for this spatial Fourier component δφ~k(t) of the scalar field.
This perturbation component exits the horizon when its covariant wavelength
aλ reaches the Hubble “circumference” 2πRH = 2πc/H , or equivalently k drops
below aH (in c = 1 units).

The slow-roll approximation (described in Liddle&Lyth textbook[1]) is a set
of conditions that apply before (k ≥ aH) the perturbation component has ex-
ited the horizon that ensures that inflation proceeds and does so in an adiabatic
(or quasi-static) way. With the simple model potential described above, assum-
ing λ < 0, a second-order phase transition occurs (like spontaneous symmetry
breaking or magnetization below Curie temperature) in which the inflaton state
φ(t) will shift adiabatically (or “roll slowly” down the potential) from the ini-
tial φ = 0 vacuum state which becomes unstable after the critical time, to
either of the newly created potential minima (vacuum states) at φ = ±m/(−λ)
after the critical time. In the other models of inflation, a qualitatively sim-
ilar phenomenon occurs. Let MP ≡ (8πG)−1/2 be the reduced Planck mass
(in c = 1, h̄ = 1 units), and define two slow-roll parameters (which differ for
different models),

ǫ(φ) ≡ M2
P

2

(

V ′(φ)

V (φ)

)2

≃ − Ḣ

H2
, η(φ) ≡M2

P

(

V ′′(φ)

V (φ)

)2

. (13)
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The four slow-roll conditions are as follows:

(i) V ′(φ) ≃ −3Hφ̇ , (ii) V (φ) ≃ 3H2M2
P = ρcrit , (iii) ǫ≪ 1 , (iv) |η| ≪ 1.

(14)
Here, (i) means that the evolution is approximately harmonic oscillator-like and
curvature is locally flat during inflation, because the Fourier transformed field
equation before horizon exit becomes

¨(δφ~k) + E2
k(δφ~k) ≃ 0 , where E2

k = (k/a)2 +m2 ≃ (k/a)2 (15)

is total energy. However, soon after horizon exit, because (k ≪ a ∼ eHt)
the third term in this field equation disappears and we have the “modern”, k-
independent evolution evolution ¨(δφ~k) + 3H ˙(δφ~k) +m2(δφ~k) ≃ 0. Next, (ii) is
the critical density condition and suggests that kinetic energy is much less than
potential energy (φ̇2 ≪ V (φ)), since energy density in field theory is given by ρ =
φ̇2+V (φ) ≃ V (φ), and again that the universe is nearly flat during inflation (ρ ≃
ρcrit). Condition (iii) can be simply interpreted to mean that the slope of the
potential down which the inflaton state rolls is not steep. Also, (iv) constrains
the curvature (second derivative) of the smooth potential curve, suggests that
the fourth term in the Fourier component field equation is negligible relative to
the third (and also second) term before horizon exit, since together with (ii), it
states that |η| ≪ 1 or M2

PV
′′(φ) ≪ V (φ) or m2 ≪ 3H2 ≤ 3(k/a)2.

The power spectrum Pφ(k) of the Gaussian vacuum fluctuation about the
initial ground state |0〉 (such that ak|0〉 = 0) during inflation can be found
quantum mechanically using the harmonic oscillator equation above. The solu-
tion well before horizon exit, in terms of initial creation a

†
k and annihilation ak

operators, is

δφ~k(t) = wk(t)ak + w∗
k(t)a

†
−k , where (16)

wk(t) =
1

L3/2

H

(2k3)1/2

(

i+
k

aH

)

exp

(

ik

aH

)

(17)

≃ 1

(aL)3/2
1

(2Ek)1/2
e−iEkt , when

k

aH
≃ k

aH

∣

∣

∣

∣

T

− k

a
(t− T ),

where the more recognizable approximated expression uses that Ek ≃ k/a≫ H
and ignores a slowly-varying phase factor, and T is some time well before the
horizon exit, so that |t− T | ≪ H−1. Then, the expectation of the mean-square
vacuum state fluctuation amplitude is

〈|δφ~k(t)|
2〉 = 〈0|δφ†~k(t)δφ~k(t)|0〉 = wk(t)w

∗
k(t)〈0|aka†

−k|0〉 = |wk(t)|2, (18)

and it allows one to find the power density, which remains approximately static
after horizon exit time t∗:

〈|δφ~x(t∗)|2〉 ≡
∫ ∞

0

Pφ(k; t∗)
dk

k
=

1

(2π)3

∫

d3x〈|δφ~k(t∗)|
2〉 (19)

⇒ Pφ(k; t > t∗) = k · 1

(2π)3

∫

d3x

∫

|~k′|=k

d2k′〈|δφ~k(t∗)|2〉

=
2k3L3

(2π)2
|wk(t∗)|2 =

2k3L3

(2π)2
H2(t∗)

2k3L3
=

(

H

2π

)2

|k=aH .(20)
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This inflaton vacuum fluctuation power spectrum at horizon exit gives rise to
both the scalar adiabatic density (or curvature) perturbation and the tensor GW
perturbation. Because the power density scales as (δφ~k)

2, the power spectrum
of another perturbation generated by the inflaton vacuum fluctuation, say δψ =
κ(δφ~k) for constant κ, would have a power spectrum Pψ(k) = κ2Pφ.

4 Density perturbations produced during slow-

roll inflation

We use the relation between the adiabatic energy density perturbation δ~k(t)
and the inflaton vacuum fluctuation (δφ~k) that causes it. On very large scales
that enter the horizon after matter-domination, and ignoring the cosmological
constant, it is found in equations (4.6) and (5.2) of [1] to be

δ~k(t) = −2

5

(

k

aH

)2 (

H

φ̇
δφ~k

)

|t=t∗ = −2

5

(

H

φ̇

)

|k=aH · δφ~k. (21)

Then, the power density of adiabatic energy density perturbations, in the slow
roll approximation of inflation and using the slow-roll conditions and parameter
ǫ, is

Pδ(k) =
4

25

(

H

φ̇

)2 (

H

2π

)2

|k=aH =
1

25π2

(H2)3

H2φ̇2
(22)

≃ 1

25π2

(

− 3

V ′(φ)

)2 (

V

3M2
P

)3

=
1

150π2M4
P

V

ǫ
.

Suppose that Pδ(k) has a power law dependence on k, with a spectral index
n defined by Pδ(k) ≃ Pδ0k

n−1 by convention. We can find this spectral index
for adiabatic density perturbations by algebraic manipulation of the above ex-
pression using the slow-roll conditions. At horizon exit, since H varies much
slower than scale parameter a in time, we have

d[log(k)]

dt
=

1

k

dk

dt
=
ȧH + aḢ

k
≃ ȧ

H

k
=
ȧ

a
= H (23)

⇒ d[log(k)] ≃ Hdt =
H

φ̇
dφ ≃ − 3H2

V ′(φ)
dφ ≃ − 1

M2
P

V (φ)

V ′(φ)
dφ

⇒ dǫ

d[log(k)]
≃ −M2

P

V ′(φ)

V (φ)

d

dφ

[

M2
P

2

(

V ′(φ)

V (φ)

)2
]

= −2ǫη + 4ǫ2 (24)

⇒ n− 1 ≡ d[log(Pδ(k))]

d[log(k)]
=

1

Pδ(k)

dPδ(k)

d[log(k)]
=

ǫ

V (φ)

d

d[log(k)]

[

V (φ)

ǫ

]

=
1

V (φ)

dV (φ)

d[log(k)]
− 1

ǫ

dǫ

d[log(k)]
= −6ǫ+ 2η = n− 1. (25)

One could also find the derivatives of η and of (n− 1) using this method, from
which it can be concluded that spectral index n(k) has a slight dependence on
k.

In most models of inflation and their values of the slow-roll parameters [3],
the spectral index will have a conservative constraint |n−1| < 0.30, so n > 0.70
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in “natural” inflation. In extended inflation theories, which are based on Brans-
Dicke theory, one would find n > 0.84. However, in order for GW from bubble
wall collisions to not be observed [3] in LIGO (as no GW background has been
observed yet), n < 0.75 is required. This fact may be used to rule out extended
inflation theories “experimentally”.

5 Gravitational wave perturbations produced dur-

ing slow-roll inflation

In order to relate gravitational waves to the inflaton field, we consider the
Lagrangian density in clasical general relativity which occurs in the Einstein-
Hilbert action. In terms of reduced Planck mass MP , it is proportional to the
Ricci scalar and requires an additional matter Lagrangian density. Minimizing
the Einstein-Hilbert action for arbitrary metric variations recovers the Einstein
equation as its field equation:

L =
1

2
M2
PR(gµν) + Lmatter (26)

δS = δ

∫

d4x
√−gL =

M2
P

2

∫

d4x

[

δ(
√−gR)

δgµν
+

2

M2
P

δ(
√−gLm)

δgµν

]

δgµν = 0

⇒ Rµν −
1

2
gµνR =

1

M2
P

(

gµνLm − 2
δLm)

δgµν

)

≡ 8πG

c4
Tµν .

If one compares this field equation with the one for a massless scalar field dis-
cussed earlier, they are identical when the identification δψ+,× = (MP /sqrt(2))h+,×

is made. So, the time-evolution of the GW amplitudes is the same as that of
the inflaton field perturbation φ, but now since κ = sqrt(2)/MP is the factor,
the power density of gravitational radiation is

PGW (k) =
2

M2
P

(

H

2π

)

|k=aH =
1

2π2

1

M2
P

H2 =
1

6π2

1

M4
P

V. (27)

As before, suppose that PGW (k) has a power law dependence on k, with a
spectral index ngrav defined by Pδ(k) ≃ PGW0k

ngrav by convention. We can find
this spectral index for gravitational waves by the same algebraic manipulation
using the slow-roll conditions as earlier. At horizon exit, we have

ngrav ≡ d[log(PGW (k))]

d[log(k)]
=

1

PGW (k)

dPGW (k)

d[log(k)]
=

1

V (φ)

d[V (φ)]

d[log(k)]
(28)

=
1

V (φ)

(

−M2
P

V ′(φ)

V (φ)

dV (φ)

dφ

)

= −2ǫ = ngrav, (29)

so |ngrav| ≪ 1 in practice, which means that the power spectrum of the GW
background due to inflation is white-noise like and independent of frequency, as
can be seen in the plot in Allen[1]. Also the ratio of the power spectrum of GW
is simply related to that of density perturbations: PGW (k)/Pδ(k) = 25ǫ, which
is still less than one in any inflation model.

Finally, if one uses an approximate theoretical result (Starobinsky, 1985) for
the anisotropy coefficients Cℓ(tensor) of the multipole expansion in the fractional
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background of CMB contributed by tensor perturbations (gravitational radia-
tion) at the large-scale (for ℓ < 100), one can compare the contributions to the
CMB anisotropy of scalar (energy density perturbations) and tensor (gravita-
tional waves) components. The large-scale anisotropy of scalar perturbations is
governed by the Sachs-Wolfe effect, according to which they are nearly constant
at the large scale. From eq. (5.40,5.41) and (6.42) in [1]:

ℓ(ℓ+ 1)Cℓ(tensor) =
π

9

(

1 +
48π2

385

)

cℓPGW (k) , while (30)

Cℓ(scalar) =
π

2

{√
π

2

Γ(1 − n−1
2 )

Γ(3/2 − n−1
2 )

Γ(ℓ+ n−1
2

Γ(ℓ + 2 − n−1
2 )

}

Pδ(k). (31)

Here, the dimensionless factor cℓ is close to 1 and cℓ → 1 for ℓ > 10. Also,
the term in the curly brackets equals (ℓ(ℓ+ 1))−1 when n− 1 = 0, so it can be
ignored since the spectral index n − 1 = −6ǫ+ 2η is small. This gives a ratio
for the anisotropy contributions to the CMB:

Cℓ(tensor)

Cℓ(scalar)
= 12.4ǫ. (32)

In the multipole anisotropy plot of the cosmic microwave background, the tensor
contribution is about a fourth of the total (for ǫ ∼ 0.02) up to about ℓ = 100
and drops off at lower scales.
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