Semi-Classical Theory of Radiative Transitions

Massimo Ricotti
ricotti@astro.umd.edu
University of Maryland

Atomic Structure (recap)

Time-dependent Schroedinger equation:

$$
i \hbar \frac{\partial \psi}{\partial t}=H \psi
$$

Stationary solution: $\psi(r, t)=\varphi e^{i E t / \hbar}$, where

$$
H \varphi=E \varphi
$$

is time-independent Schroedinger equation.
For hydrogen atom, neglecting spin, relativistic effects, nuclear effects, the Hamiltonian is

$$
H=\frac{|\mathbf{p}|^{2}}{2 m_{e}}-e \phi,
$$

where the momentum $\mathbf{p}=i \hbar \nabla$ is an operator and $\phi(r)=e / r$.

Solution for hydrogen atom in terms of eigenfunctions (complete orthonormal base):

$$
\varphi(r, \theta, \phi)=\frac{R(n, l)}{r} Y_{l, m}(\theta, \phi)
$$

Where spherical harmonics obey the eigenvalue problem,

$$
\begin{align*}
L^{2} Y_{l, m} & =l(l+1) \hbar^{2} Y_{l, m}, \tag{1}\\
L_{z} Y_{l, m} & =m \hbar Y_{l, m}, \tag{2}
\end{align*}
$$

and the radial function obeys the differential equation

$$
\frac{d^{2} R_{n, l}}{d r^{2}}+\left\{\frac{2 m_{e}}{\hbar^{2}}\left[E_{n}-\frac{e}{r}\right]-\frac{l(l+1)}{r^{2}}\right\} R_{n, l}=0
$$

where $E_{n}=-e^{2} / 2 n^{2}$, with $n=l+1, l+2, l+3, \ldots$.

Non-relativistic limit of EM Hamiltonian

For hydrogen atom: $m_{e} v^{2} / 2 \sim e^{2} / 2 a_{0}$ where $a_{0}=\hbar^{2} / m_{e} e^{2}$. Thus, velocity $v / c \sim e^{2} / \hbar c \equiv \alpha=1 / 137$ is NR.
The NR Hamiltonian of single particle in EM fied is:

$$
H=\frac{1}{2 m_{e}}\left|\mathbf{p}+\frac{e}{c} \mathbf{A}\right|^{2}-e \phi,
$$

where $m_{e} \dot{\mathbf{x}}=\mathbf{p}+(e / c) \mathbf{A}$ is the particle momentum and \mathbf{A} and ϕ are the EM vector and scalar potentials.

In Coulomb gauge $\left(\nabla \cdot \mathbf{A}=\phi_{E M}=0\right)$ can be shown that \mathbf{A} represent
EM in vacuum (i.e., $\square \mathbf{A}=0$) and ϕ represent the static potential of atom.

Thus, Hamiltonian can be separated in $H=H_{s t}+H_{\text {int }}$, with $H_{\text {int }}=H_{1}+H_{2}$ where

$$
H_{1} \equiv \frac{e}{2 m_{e} c}(\mathbf{p} \cdot \mathbf{A}+\mathbf{A} \cdot \mathbf{p})=\frac{e}{m_{e} c} \mathbf{A} \cdot \mathbf{p}
$$

(note that in Coulomb gauge $[\mathbf{A}, \mathbf{p}]=0$), and

$$
H_{2} \equiv \frac{e^{2}}{2 m_{e} c^{2}} \mathbf{A} \cdot \mathbf{A} \text { (two photon processes). }
$$

Can show that $H_{2} \ll H_{1} \ll H_{s t}$, with

$$
H_{2} / H_{1} \sim H_{1} / H_{s t} \sim\left(n_{p h} a_{0}^{3}\right)^{1 / 2} \ll 1
$$

Because $\square \mathbf{A}=0$ we can write:

$$
\mathbf{A}=\sum_{\mathbf{k}, \alpha}\left[\mathbf{e}_{\alpha}(\hat{\mathbf{k}}) a_{\alpha}(\mathbf{k}) e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)}+c . c .\right]
$$

From Parsival theorem we have

$$
H_{\text {rad }}=\frac{1}{8 \pi} \int_{V} d x^{3}\left(|\mathbf{E}|^{2}+|\mathbf{B}|^{2}\right)=\frac{2 V}{8 \pi} \sum_{\mathbf{k}, \alpha}\left(\left|\mathbf{E}_{\alpha}(\mathbf{k})\right|^{2}+\left|\mathbf{B}_{\alpha}(\mathbf{k})\right|^{2}\right)
$$

In Coulomb gauge we have $\mathbf{E}=-(\partial A / \partial t) / c, \mathbf{B}=\nabla \times \mathbf{A}$. Thus, $\mathbf{E}_{\alpha}=i k a_{\alpha} \mathbf{e}_{\alpha}, \mathbf{B}_{\alpha}=i k a_{\alpha}\left(\hat{\mathbf{k}} \times \mathbf{e}_{\alpha}\right)$ and

$$
H_{r a d}=\frac{V}{2 \pi} \sum_{\mathbf{k}, \alpha} k^{2}\left|a_{\alpha}(\mathbf{k})\right|^{2}
$$

In terms of photon occupation number:

$$
H_{r a d}=\sum_{\mathbf{k}, \alpha} \hbar \omega \mathcal{N}_{\alpha}(\mathbf{k}), \rightarrow\left|a_{\alpha}(\mathbf{k})\right|=c\left[\frac{h \mathcal{N}_{\alpha}(k)}{\left.V{\underset{\text { semiclatssiil }}{ }}^{\omega}\right]}\right.
$$

Thus,

$$
H_{1}=\sum\left[H_{\alpha}^{a b s} e^{-i \omega t}+H_{\alpha}^{e m} e^{i \omega t}\right]
$$

where

$$
\begin{align*}
H_{\alpha}^{a b s} & =\frac{e}{m_{e}}\left[\frac{h}{V \omega} \mathcal{N}_{\alpha}(\mathbf{k})\right]^{1 / 2} e^{i \mathbf{k} \cdot \mathbf{x}} \mathbf{e}_{\alpha}(\hat{\mathbf{k}}) \cdot \mathbf{p} \tag{3}\\
H_{\alpha}^{a m} & =\frac{e}{m_{e}}\left\{\frac{h}{V \omega}\left[1+\mathcal{N}_{\alpha}(\mathbf{k})\right]\right\}^{1 / 2} e^{-i \mathbf{k} \cdot \mathbf{x}} \mathbf{e}_{\alpha}(\hat{\mathbf{k}}) \cdot \mathbf{p} \tag{4}
\end{align*}
$$

Note, we added 1 to 2nd eq. to account for spontaneous emission processes. Our semi-classic treatment in which the EM field is not quantized. a and a^{\dagger} should be operators (creation/annihilation operators) that do not commute: $\left[a, a^{\dagger}\right]=h c / \omega V$. This gives rise to spontaneous emission term.

Perturbation theory

We may expand the perturbed wave function ψ as follows:

$$
\psi(x, t)=\sum_{j} c_{j}(t) \varphi_{j}(x) e^{-i E_{j} t / \hbar}
$$

because H_{0} is Hermitian operator and φ_{j} satisfying $H_{0} \varphi_{j}=E_{j} \varphi_{j}$ forms a complete orthonormal basis for representing any wave function for the atomic system.
Thus, eliminating the zero-th order terms we have

$$
H_{1} \psi=\sum_{j} c_{j} H_{1} \varphi_{j} e^{-i E_{j} t / \hbar}=i \hbar \sum_{j} \dot{c}_{j} \varphi_{j} e^{-i E_{j} t / \hbar}=
$$

Now we can multiply by $\left\langle\varphi_{f}\right|=\varphi_{f}^{*} e^{i E_{f} t / \hbar}$

$$
\sum_{j} e^{i \omega_{f j} t} c_{j}(t)\left\langle\varphi_{f}\right| H_{1}\left|\varphi_{j}\right\rangle=i \hbar \dot{c}_{f}(t) \text { where } \omega_{f i} \equiv\left(E_{f}-E_{j}\right) / \hbar
$$

Absorption transition probability

Because at $t=0$ we have $c_{j}=\delta_{j i}$ to zero-th order we can drop all terms $j \neq i$ in the summation:

$$
\begin{aligned}
c_{f}(t) & =-i \hbar^{-1} \int_{0}^{t}<\varphi_{f}\left|H_{1}\right| \varphi_{i}>e^{i \omega_{f i} t^{\prime}} d t^{\prime} \\
& =-\hbar^{-1}<\varphi_{f}\left|H_{\alpha}^{a b s}\right| \varphi_{i}>\left[\frac{e^{i\left(\omega_{f i}-\omega\right) t}-1}{\left(\omega_{f i}-\omega\right)}\right]
\end{aligned}
$$

Thus, going to the continuous limit and using $d k^{3}=c^{-3} \omega^{2} d \omega d \Omega$, the transition probability $P_{i f}=\sum_{\mathbf{k}, \alpha}\left|c_{f}\right|^{2}$ is

$$
\left.P_{i f}=\frac{V}{(2 \pi)^{2}} \int \frac{d^{3} k}{\hbar^{2}}\left|\left\langle\varphi_{f}\right| H_{\alpha}^{a b s}\right| \varphi_{i}\right\rangle\left.\right|^{2} \frac{\sin ^{2}\left[\left(\omega-\omega_{f i}\right) t / 2\right]}{\left[\left(\omega-\omega_{f i}\right) / 2\right]^{2}} \propto t \mathcal{N}_{\alpha}\left\langle\varphi_{f}\right| e^{i \mathbf{k} \cdot \mathbf{x}} \mathbf{e}_{\alpha} \cdot \mathbf{p}\left|\varphi_{i}\right\rangle
$$

Thus, the transition rate probability is $d P_{i f} / d t \sim \operatorname{const}(t)$.

Dipole Approximation

Approximate $e^{i \mathbf{k} \cdot \mathbf{x}}=1+\mathbf{k} \cdot \mathbf{x}+\ldots \sim 1$ thus

$$
<\varphi_{f}\left|e^{i \mathbf{k} \cdot \mathbf{x}} \mathbf{e}_{\alpha} \cdot \mathbf{p}\right| \varphi_{i}>\sim \mathbf{e}_{\alpha} \cdot<\varphi_{f}|\mathbf{p}| \varphi_{i}>
$$

It is useful to express the momentum operator as the commutator

$$
\left[H_{0}, \mathbf{x}\right] \equiv H_{0} \mathbf{x}-\mathbf{x} H_{0}=-\frac{\hbar^{2}}{2 m_{e}}\left(\nabla^{2} \mathbf{x}-\mathbf{x} \nabla^{2}\right)=-\frac{\hbar^{2}}{m_{e}} \nabla=-\frac{i \hbar}{m_{e}} \mathbf{p}
$$

Thus,

$$
<\varphi_{f}|\mathbf{p}| \varphi_{i}>=i m_{e} \omega_{f i} \mathbf{X}_{f i}, \text { where } \mathbf{X}_{f i} \equiv<\varphi_{f}|\mathbf{x}| \varphi_{i}>
$$

Bound-bound absorption cross section

Finally, from the transition probability rate we derive the cross section σ_{ν} for a flux of photons $c \mathcal{N}$ integrated over phase-space elements:

$$
\frac{d P_{i f}}{d t}=\frac{4 \pi e^{2} \omega_{f i}^{3}}{3 h c^{3}} \mathcal{N}\left(\omega_{f i}\right)\left|\mathbf{X}_{f i}\right|^{2}=\frac{1}{(2 \pi)^{3}} \int_{0}^{\infty} \sigma_{\nu} c \mathcal{N}(\omega) d^{3} k .
$$

Thus, $\sigma_{\nu}=\frac{4 \pi^{2}}{3} \alpha\left|\mathbf{X}_{f i}\right|^{2} \omega \delta\left(\omega-\omega_{f i}\right)$, where α is the fine structure constant. In terms of the classical cross section for bound-bound transitions we have:

$$
\sigma_{\nu}=\frac{\pi e^{2}}{m_{e} c} f_{12} \phi_{12}(\nu)
$$

where the oscillator strength in terms of the matrix elements is:

$$
f_{12}=\frac{2 m_{e}\left(\omega_{21}\left|\mathbf{X}_{\mathbf{2 1}}\right|\right)^{2}}{3 \hbar \omega_{21}} \sim 1
$$

(ratio of kinetic energy of electron to the emitted photon energy.) Readiane Tenstions p-p.1/1/

Relativistic Electromagnetic Hamiltonian

Relativistic Hamiltonian with EM field:

$$
H=\left[(c \mathbf{p}-e \mathbf{A})^{2}+m^{2} c^{4}\right]^{1 / 2}+e \phi
$$

Relativistic hard to separate due to square root. Two approaches:

1) Klein-Gordon (without electromagnetic potentials for simplicity) square operators in Schroedinger eq before applying to ψ :
$H^{2} \psi=\hbar \partial^{2} \psi / \partial t^{2}$

$$
\left[\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right)-\left(\frac{m c}{\hbar}\right)^{2}\right] \psi=0
$$

Operator is d'Alambertian where the second term is the Compton wavenumber of particle of mass m.
The solution represent the equation for scalar field ψ in QFT. Scalar field represent a gauge boson of mass m and spin $s=0$. Photon is a massless boson of spin $s=1$.

Dirac approach

Rewrite relativistic equation as linear in p :

$$
H=\mathbf{a} \cdot \mathbf{P} c+b m c^{2}+e \phi \equiv\left[\left(c^{2} \mathbf{P}^{2}+m^{2} c^{4}\right]^{1 / 2}+e \phi\right.
$$

where $\mathbf{P}=\mathbf{p}-e / c \mathbf{A}$ is the relativistic particle momentum.
The coefficient a and b need to be 4×4 matrices to satisfy the equation.
The solution gives rise to concepts of spin and anti-matter. For particle at rest in vacuum there are 2 possible eigenvalues of energy:

$$
E= \pm m_{e} c^{2}
$$

What represent a negative rest mass energy? Dirac interpretation of anti-particle: a hole in "sea" of negative rest-mass energy particles (not quite rigorous).
Feynman interpretation of anti-particle: positive rest-mass energy but

