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Atomic Structure (recap)

Time-dependent Schroedinger equation:

i~
∂ψ

∂t
= Hψ

Stationary solution: ψ(r, t) = ϕeiEt/~, where

Hϕ = Eϕ

is time-independent Schroedinger equation.
For hydrogen atom, neglecting spin, relativistic effects, nuclear effects,
the Hamiltonian is

H =
|p|2

2me
− eφ,

where the momentum p = i~∇ is an operator and φ(r) = e/r.
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Solution for hydrogen atom in terms of eigenfunctions (complete
orthonormal base):

ϕ(r, θ, φ) =
R(n, l)

r
Yl,m(θ, φ)

Where spherical harmonics obey the eigenvalue problem,

L2Yl,m = l(l + 1)~2Yl,m, (1)

LzYl,m = m~Yl,m, (2)

and the radial function obeys the differential equation

d2Rn,l

dr2
+

{

2me

~2

[

En −
e

r

]

−
l(l + 1)

r2

}

Rn,l = 0.

where En = −e2/2n2, with n = l + 1, l + 2, l + 3, ....
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Non-relativistic limit of EM Hamiltonian

For hydrogen atom: mev
2/2 ∼ e2/2a0 where a0 = ~

2/mee
2. Thus,

velocity v/c ∼ e2/~c ≡ α = 1/137 is NR.
The NR Hamiltonian of single particle in EM fied is:

H =
1

2me

∣

∣

∣
p +

e

c
A

∣

∣

∣

2

− eφ,

where meẋ = p + (e/c)A is the particle momentum and A and φ are
the EM vector and scalar potentials.

In Coulomb gauge (∇ · A = φEM = 0) can be shown that A represent

EM in vacuum (i.e., �A = 0) and φ represent the static potential of atom.
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Thus, Hamiltonian can be separated in H = Hst +Hint, with
Hint = H1 +H2 where

H1 ≡
e

2mec
(p · A + A · p) =

e

mec
A · p,

(note that in Coulomb gauge [A,p] = 0), and

H2 ≡
e2

2mec2
A · A (two photon processes).

Can show that H2 ≪ H1 ≪ Hst, with

H2/H1 ∼ H1/Hst ∼ (npha
3
0)

1/2 ≪ 1
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Because �A = 0 we can write:

A =
∑

k,α

[

eα(k̂)aα(k)ei(k·x−ωt) + c.c.
]

From Parsival theorem we have

Hrad =
1

8π

∫

V

dx3 (|E|2 + |B|2) =
2V

8π

∑

k,α

(|Eα(k)|2 + |Bα(k)|2)

In Coulomb gauge we have E = −(∂A/∂t)/c, B = ∇× A. Thus,
Eα = ikaαeα, Bα = ikaα(k̂ × eα) and

Hrad =
V

2π

∑

k,α

k2|aα(k)|2

In terms of photon occupation number:

Hrad =
∑

k,α

~ωNα(k),→ |aα(k)| = c

[

hNα(k)

V ω

]
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Thus,

H1 =
∑

[Habs
α e−iωt +Hem

α eiωt]

where

Habs
α =

e

me

[

h

V ω
Nα(k)

]1/2

eik·xeα(k̂) · p, (3)

Ham
α =

e

me

{

h

V ω
[1 + Nα(k)]

}1/2

e−ik·xeα(k̂) · p, (4)

(5)

Note, we added 1 to 2nd eq. to account for spontaneous emission
processes. Our semi-classic treatment in which the EM field is not
quantized. a and a† should be operators (creation/annihilation
operators) that do not commute: [a, a†] = hc/ωV . This gives rise to
spontaneous emission term.
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Perturbation theory

We may expand the perturbed wave function ψ as follows:

ψ(x, t) =
∑

j

cj(t)ϕj(x)e
−iEjt/~

because H0 is Hermitian operator and ϕj satisfying H0ϕj = Ejϕj

forms a complete orthonormal basis for representing any wave
function for the atomic system.
Thus, eliminating the zero-th order terms we have

H1ψ =
∑

j

cjH1ϕje
−iEjt/~ = i~

∑

j

ċjϕje
−iEjt/~ =

Now we can multiply by 〈ϕf | = ϕ∗
fe

iEf t/~

∑

j

eiωfjtcj(t)〈ϕf |H1|ϕj〉 = i~ċf (t) where ωfi ≡ (Ef − Ej)/~.
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Absorption transition probability

Because at t = 0 we have cj = δji to zero-th order we can drop all
terms j 6= i in the summation:

cf (t) = −i~−1

∫ t

0

< ϕf |H1|ϕi > eiωfit
′

dt′

= −~
−1 < ϕf |H

abs
α |ϕi >

[

ei(ωfi−ω)t − 1

(ωfi − ω)

]

Thus, going to the continuous limit and using dk3 = c−3ω2dωdΩ, the
transition probability Pif =

∑

k,α |cf |2 is

Pif =
V

(2π)2

∫

d3k

~2
|〈ϕf |H

abs
α |ϕi〉|

2 sin2[(ω − ωfi)t/2]

[(ω − ωfi)/2]2
∝ tNα〈ϕf |e

ik·xeα·p|ϕi〉

Thus, the transition rate probability is dPif/dt ∼ const(t).
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Dipole Approximation

Approximate eik·x = 1 + k · x + ... ∼ 1 thus

< ϕf |e
ik·xeα · p|ϕi >∼ eα· < ϕf |p|ϕi >

It is useful to express the momentum operator as the commutator

[H0,x] ≡ H0x − xH0 = −
~

2

2me
(∇2x − x∇2) = −

~
2

me
∇ = −

i~

me
p

Thus,

< ϕf |p|ϕi >= imeωfiXfi, where Xfi ≡< ϕf |x|ϕi >
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Bound-bound absorption cross section

Finally, from the transition probability rate we derive the cross section
σν for a flux of photons cN integrated over phase-space elements:

dPif

dt
=

4πe2ω3
fi

3hc3
N (ωfi)|Xfi|

2 =
1

(2π)3

∫ ∞

0

σνcN (ω)d3k.

Thus, σν = 4π2

3 α|Xfi|
2ωδ(ω − ωfi), where α is the fine structure

constant. In terms of the classical cross section for bound-bound
transitions we have:

σν =
πe2

mec
f12φ12(ν),

where the oscillator strength in terms of the matrix elements is:

f12 =
2me(ω21|X21|)2

3~ω21
∼ 1.

(ratio of kinetic energy of electron to the emitted photon energy).Semi-Classical Theory of Radiative Transitions – p.11/13



Relativistic Electromagnetic Hamiltonian

Relativistic Hamiltonian with EM field:

H = [(cp− eA)2 +m2c4]1/2 + eφ

Relativistic hard to separate due to square root. Two approaches:
1) Klein-Gordon (without electromagnetic potentials for simplicity)
square operators in Schroedinger eq before applying to ψ:
H2ψ = ~∂2ψ/∂t2

[(

∇2 −
1

c2
∂2

∂t2

)

−
(mc

~

)2
]

ψ = 0

Operator is d’Alambertian where the second term is the Compton
wavenumber of particle of mass m.
The solution represent the equation for scalar field ψ in QFT. Scalar
field represent a gauge boson of mass m and spin s = 0. Photon is a
massless boson of spin s = 1. Semi-Classical Theory of Radiative Transitions – p.12/13



Dirac approach

Rewrite relativistic equation as linear in p:

H = a · Pc+ bmc2 + eφ ≡ [(c2P2 +m2c4]1/2 + eφ

where P = p− e/cA is the relativistic particle momentum.
The coefficient a and b need to be 4 × 4 matrices to satisfy the
equation.
The solution gives rise to concepts of spin and anti-matter. For particle
at rest in vacuum there are 2 possible eigenvalues of energy:

E = ±mec
2.

What represent a negative rest mass energy? Dirac interpretation of
anti-particle: a hole in “sea” of negative rest-mass energy particles (not
quite rigorous).
Feynman interpretation of anti-particle: positive rest-mass energy but
moving backward in time (more rigorous interpretation).Semi-Classical Theory of Radiative Transitions – p.13/13
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